Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1136-1141.doi: 10.3724/SP.J.1006.2018.01136

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Preliminary Study on Resistance of Different Mungbean Varieties to Callosobruchus chinensis (L.)

Hong-Min WANG1,**(),Xiao-Fang CHENG2,**,Yan-Ping FAN2,Hai-Xia ZHENG2,Yao-Wen ZHANG3,Xian-Hong ZHANG2,*()   

  1. 1 College of Economics and Management, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    3 Crop Sciences Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2017-12-10 Accepted:2018-03-26 Online:2018-08-10 Published:2018-04-24
  • Contact: Hong-Min WANG,Xiao-Fang CHENG,Xian-Hong ZHANG E-mail:whm6970@163.com;zxh6288@sina.com
  • Supported by:
    This study was supported by the China Agriculture Research Systems(GARS-08-G11)

Abstract:

To clarify the effective component in mungbean seeds against bruchid (Callosobruchus chinensis L.), we identified the bruchid resistance of 13 mungbean varieties via in-house artificial feeding method, and the insect-resistant components in mungbean were investigated. Six mungbean varieties including B18, B20, B23, B27, A22, and Jinlyu 7, were found to be highly resistant to bruchid, showing seed-damage rates lower than 10%, whereas, the remaining seven varieties were highly susceptible with seed-damage rates higher than 90%. There was no significant difference in egg-hatch rate among all varieties. However, the developmental duration, the adult-emergence rate ,and the bodyweights of both male and female adults varied significantly between the resistant and susceptible varieties. Moreover, seed coat had no effect on the resistance to bruchid because samples with or without seed coat showed no significant difference in the rates of egg-hatch, adult emergence, and seed damage. The resistance test with synthetic mungbean indicated that the adult-emergence rate declined from 30.48% to 0 when the protein component of resistant mungbean varieties increased from 25% to 50%. In contrast, the increase of starch proportion had no effect on theadult emergence rate. Therefore, we conclude that seed proteins play an important role in bruchid resistance in mungbean.

Key words: mungbean, different varieties, Callosobruchus chinensis (L.), resistance

Table 1

Comparison of different mungbean varieties in resistant"

Table 2

Infestation of C. chinensis (L.) on decorticated seeds of resistant and susceptible mungbeans"

试验材料
Material
着卵量
Number of eggs
孵化率NS
Egg hatch rate NS (%)
成虫羽化率
Adult emergence rate (%)
发育历期
Developmental
time (d)
种子受害率
Seeds damage rate
(%)
晋绿1号(带皮) Jinlyu 1 (seed coat) 244.1±7.08 b 84.43±5.43 66.33±3.08 c 23.22±1.63 a 100.00±0.00 c
晋绿1号(去皮) Jinlyu 1 (no seed coat) 247.1±12.78 b 81.98±3.67 64.82±4.92 c 23.66±1.52 a 100.00±0.00 c
潍绿2117(带皮) Weilyu 2117 (seed coat) 218.6±10.27 a 80.55±4.17 63.21±2.83 c 23.48±1.22 a 100.00±0.00 c
潍绿2117(去皮) Weilyu 2117 (no seed coat) 216.2±13.06 a 83.56±6.22 64.18±3.21 c 23.55±1.52 a 100.00±0.00 c
晋绿7号(带皮) Jinlyu 7 (seed coat) 238.1±11.23 ab 80.69±4.57 8.79±1.69 b 25.46±1.63 b 9.12±2.33 b
晋绿7号(去皮) Jinlyu 7 (no seed coat) 240.2±10.36 ab 82.33±3.78 8.18±2.12 b 24.99±2.18 ab 8.98±1.85 b
B20 (带皮) B20 (seed coat) 250.2±14.58 b 82.23±5.51 0.00±0.00 a - 0.00±0.00 a
B20 (去皮) B20 (no seed coat) 227.6±9.81 ab 81.45±3.88 0.00±0.00 a - 0.00±0.00 a

Table 3

Effects of different ratios of insect resistant mungbean protein and starch on C. chinensis (L.)"

种子成分
Seed compoment
着卵量NS
Number of eggsNS
种子受害率
Seeds damage rate (%)
成虫羽化率
Adult emergence rate (%)
潍绿2117 100% Weilyu 2117 100% 195.0±17.59 100.00±0.00 b 58.32±6.09 c
潍绿2117 75% + 蛋白 25% Weilyu 2117 75% + Protein 25% 224.2±23.93 100.00±0.00 b 30.48±3.95 b
潍绿2117 50% + 蛋白 50% Weilyu 2117 100% + Protein 50% 204.4±26.01 0.00±0.00 a 0.00±0.00 a
潍绿2117 25% + 淀粉 25% Weilyu 2117 100% + Starch 25% 186.0±32.48 100.00±0.00 b 54.36±4.56 c
潍绿2117 25% + 淀粉 50% Weilyu 2117 100% + Starch 50% 231.0±23.25 100.00±0.00 b 51.73±5.83 c
[1] Gujar G T, Yadav T D . Feeding of Callobruchus maculatus (Fab.) and Callosobruchs chinensis (Linn.) in green gram. Indian J Entomol, 1978,40:108-112
[2] Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y . The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000,115:27-41
[3] Kitamura K, Ishmoto M, Sawa M . Inheritance of resistance to infestation with azukibean weevil in Vigna sublobata and successful in corporation to V. radiata. Jpn J Breed, 1988,38:459-464
[4] 程须珍, 王素华, 金达生, 杨又迪, 吴绍宇, 周吉红 . 绿豆抗豆象遗传的初步研究. 植物遗传资源科学, 2001,2(4):12-15
doi: 10.3969/j.issn.1672-1810.2001.04.003
Cheng X Z, Wang S H, Jin D S, Yang Y D, Wu S Y, Zhou J H . Preliminary study on heredity of mungbean resistance to bruchid. J Plant Genet Resour, 2001,2(4):12-15 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2001.04.003
[5] 程须珍, 王素华, 金达生, 王泮龙, 杨又迪 . 绿豆抗豆象育种品系综合评价. 植物遗传资源学报, 2003,4:110-113
doi: 10.3969/j.issn.1672-1810.2003.02.005
Cheng X Z, Wang S H, Jin D S, Wang P L, Yang Y D . Evaluation on mungbean breeding lines for resistance to bruchid. J Plant Genet Resour, 2003,4:110-113 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-1810.2003.02.005
[6] 成珊, 沈群 . 不同品种和不同产地绿豆分离蛋白功能特性的研究. 食品科技, 2009,34(9):148-153
Cheng S, Shen Q . Study on functional characteristics of mungbean protein isolates in different cultivars and from different areas. Food Sci Tech, 2009,34(9):148-153 (in Chinese with English abstract)
[7] 李文浩, 谭斌, 刘宏, 张国权, 沈群 . 我国9个品种绿豆淀粉的理化特性研究. 中国食品学报, 2013,13(4):58-64
Li W H, Tan B, Liu H, Zhang G Q, Shen Q . Physicochemical properties of starches separated from nine mung bean varieties grown in China. J Chin Inst Food Sci Tech, 2013,13(4):58-64 (in Chinese with English abstract)
[8] Somta P, Talekar N S, Srinives P . Characterization of Callosobruchus chinensis (L.) resistance in Vigna umbellate (Thunb.) Ohwi and Ohashi. J Stored Prod Res 2006,42:313-327
[9] Johnson C D . Coevolution of some seed beetles (Coleoptera: Bruchidae) and their hosts. Ecology, 1974,55:1096-1103
doi: 10.2307/1940359
[10] Lambrides C J, Imrie B C . Susceptibility of mungbean varieties to the bruchid species Callsobruchus maculatus (F.), C. phaseoli (Gyll.), C. chinensis (L.), and Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae). Aust J Agric Res, 2000,51:85-89
[11] Janzen D H . How southern cowpea weevil larvae (Bruchidae: Callosobruchus maculatus) die on non-host seeds. Ecology, 1977,58:921-927
[12] Desroches P, Shazly E E, Mandon N, Duc G, Huignard J . Development of Callosobruchus chinensis (L.) and C. maculatus (F.) (Coleoptera: Bruchidae) in seeds of Vicia faba L. differing in their tannin, vicine and convicine contents. Stored Prod Res, 1995,31:83-89
[13] Thiery D, Jarry M, Pouzat J . To penetrate or not to penetrate? A behavioral choice by bean beetle first-instar larvae in response to Phaseolus vulgaris seed surface quality. J Chem Ecol, 1994,20:1867-1875
[14] Oliveira A E A, Fernandes K V S, Souza A J, Santos P O . Influence of the soybean seed coat upon seed infestation and development of Callosobruchus maculatus larvae. In: Davies S, Evans G, Columbus F, eds. Soybean and Wheat Crops: Growth, Fertilization, and Yield. New York: Nova Science Publishers, 2009. pp 1-21
[15] Souza A J, Santos P O, Pinto M S T, Wermelinger T T, Ribeiro E S, Souza S C, Deus M F, Souza M C, Xavier-Filho J, Fernandes K V S, Oliveira A E A . Natural seed coats provide protection against penetration by Callosobruchus maculatus(Coleoptera: Bruchidae) larvae. Crop Prot, 2011,30:651-657
[16] Souza A J, Ferreira A T S, Perales J, Beghini D G, Fernandes K V S, Xavier-Filho J, Venancio T M, Oliveira A E A . Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus. Braz J Med Biol Res, 2012,45:118-124
[17] Kashiwaba K, Tomooka N, Kaga A, Han O K, Vaughan D A . Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean(Vigna umbellata). J Econ Entomol, 2003,96:207-213
[18] Talekar N S, Lin C P . Characterization of Callosobruchus chinensis(Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol, 1992,85:1150-1153
[19] Chen K C, Lin C Y, Kuan C C, Sung H Y, Chen C S . A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem, 2002,50:7258-7263
doi: 10.1021/jf0211635 pmid: 12452641
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[9] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[10] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[11] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[12] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[13] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[14] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[15] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!