Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 987-996.doi: 10.3724/SP.J.1006.2020.94158

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.)

TAO Ai-Fen1,2,YOU Zi-Yi2,XU Jian-Tang2,LIN Li-Hui2,ZHANG Li-Wu2,QI Jian-Min2,*(),FANG Ping-Ping2,*()   

  1. 1 Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Key Laboratory of Crops by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2019-10-23 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-16
  • Contact: Jian-Min QI,Ping-Ping FANG E-mail:qijm863@163.com;fangpp1990@qq.com
  • Supported by:
    China Agriculture Research System(CARS-19-E06)

Abstract:

Developing CAPS markers can provide a new and effective tool for genetic diversity analysis, germplasm identification and marker-assistant selection of jute. The transcriptional sequence analysis was carried out by Illumina HiSeq 4000 with jute 179 and the wild species in Aidian. Furthermore, the SNP loci were screened and primers related to lignin synthesis genes 4CL, COMT and transcription factor MYB were developed. CAPS markers were screened based on above SNP primers using dCAPS Finder2.0 and their polymorphism was verified. A total of 72,674 unigene sequences were got in jute transcriptome by assembly, with a length of 29,705,997 bp, a number of SNP loci of 67,567, and an average of 1 SNP per 440 bp. Thirty-nine pairs of SNP primers related to 4CL, COMT, and MYB were designed by Oligo8, of which 26 pairs of CAPS primers were screened, with a developing rate of 66.7%. Among the 26 pairs of CAPS markers, 11 pairs were polymorphic, with a polymorphic ratio of 43.2%. The screened CAPS markers could effectively distinguish 12 different accessions of jute germplasm, indicating CAPS is an ideal molecular marker which can lie a reliable tool used in genetic research of jute.

Key words: jute, transcriptome, SNP loci, CAPS markers, development

Table 1

Name and type of jute accessions used in the validation of CAPS markers"

编号
Number
名称
Name
品种类型
Type of accessions
1 梅峰4号 Meifeng 4 圆果种 Corchorus capsularis
2 越南圆果 Yuenanyuanguo 圆果种 Corchorus capsularis
3 广东独尾麻 Guangdongduweima 圆果种 Corchorus capsularis
4 中黄麻1号 Zhonghuangma 1 圆果种 Corchorus capsularis
5 日本大分青皮 Japanese Dafenqingpi 圆果种 Corchorus capsularis
6 福农1号 Funong 1 长果种 Corchorus olitoris
7 马里野生种 Maliyeshengzhong 长果种 Corchorus olitoris
8 广西长果 Guangxichangguo 长果种 Corchorus olitoris
9 日本5号 Japanese 5 长果种 Corchorus olitoris
10 翠绿 Cuilyu 长果种 Corchorus olitoris
11 龙溪长果 Longxichangguo 长果种 Corchorus olitoris
12 台湾加利麻 Taiwanjialima 圆果种 Corchorus capsularis

Fig. 1

Trend of SNP loci distribution in the unigenes of jute The abscissa shows the density of the SNPs, which means the number of SNPs per kb gene sequence in jute; the ordinate shows the number of unigenes with corresponding density of SNPs."

Table 2

Distribution density of SNP loci in the unigenes of jute"

SNP位点的数目
Number of SNP loci
对应unigene序列的数目
Corresponding number of unigenes
所占比例
Ratio of SNP (%)
0-1 66,525 91.53
1-2 2092 2.88
2-3 1277 1.76
3-4 948 1.30
4-5 735 1.01
5-6 258 0.35
6-7 234 0.32
7-8 174 0.24
>8 431 0.59

Table 3

Name and sequence of 39 pairs of SNP primers"

引物名称
Primer name
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
4CL SNP1-1 GTGCTTTTCATCGGTGGTTT TGTCGTAAAACTGCTGCTGG
4CL SNP1-2 CGATTTTCATCTCGGCATTT GCCACCCATAGTTTTGGCTA
4CL SNP2-1 AGCTCCCATGAAAGCAAAGA AGCTCCCATGAAAGCAAAGA
4CL SNP2-2 AGCTCCCATGAAAGCAAAGA CGATTTTCATCTCGGCATTT
4CL SNP3-1 GAGCTTAGCGCGAGAAGTGT TGTCGTAAAACTGCTGCTGG
4CL SNP3-2 TCTCGGCATTTCTAACCACC GCCACCCATAGTTTTGGCTA
COMT SNP1F1 CACCGTTTTCCGTTGTTCTT GTTGGAAAGCTAGCCAAACG
COMT SNP1F2 ACACTCCATCTTGGTTTGGC GCTACCCATGGCGTTAAAAA
COMT SNP1F3 CCAGGTTTTCAACACTGCAA GCATCTCCATTGGGAACACT
COMT SNP1F4 TGAAGATGACAATAAAGCGAAAA GTGGACAATCAGTGTGTGGC
COMT SNP1F5 ATGCAAGAAAGCCGAGTTTG GCAGGATTCCAAGGTTTCAA
COMT SNP2F1 AAGGTGATAGAAACACGCCG GTTGGAAAGCTAGCCAAACG
COMT SNP2F2 ACTCCATCTTGGTTTGGCAC GCTACCCATGGCGTTAAAAA
引物名称
Primer name
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
COMT SNP2F3 GCTTAACCGGGTTGTTGATG GCATCTCCATTGGGAACACT
COMT SNP2F4 TGAAGATGACAATAAAGCGAAAA GCATCTCCATTGGGAACACT
COMT SNP2F5 ATGCAAGAAAGCCGAGTTTG TTGATTGCATCATGTTGGCT
COMT SNP3F1 AATTTCACCGTTTTCCGTTG GTTGGAAAGCTAGCCAAACG
COMT SNP3F2 ACTCCATCTTGGTTTGGCAC AAAAACTGCGGTGGAGATTG
COMT SNP3F3 GCTTAACCGGGTTGTTGATG CCATTGTCTGGAATGGCTTT
COMT SNP3F4 TGAAGATGACAATAAAGCGAAAA TGGACAATCAGTGTGTGGCT
COMT SNP3F5 ATGCAAGAAAGCCGAGTTTG CATAATCCGGGTGGAAAAGA
MYB SNP F1 TTGCAATGGATTTGTGCAAT GATTCCCAGCAAATGGAAGA
MYB SNP F2 TGCCTTGTCCTCTCACTAAGC TTGAGGCCACATGTTCTAATTG
MYB SNP F3 CCTTGCTATCATTGCCCATT TTTATGGCCCTCAAAACTGG
MYB SNP F4 CAAAAGCTCATCCTCTTCCG CAAACTGCTTGGCTCATCAA
MYB SNP F5 AAGTGTTCAAAGAGAAGCAGCA TTATAGATGGCGATGGAGGC
MYB SNP F6 AAGCAGAAGCAAAATCCCAA AAGTAGCCATGGAGGTGTGG
MYB SNP F7 GGCCATGAGTTTCAACGACT GACGGGAAGAGAAAACCCTT
MYB SNP F8 CTGCGTTTGTAACCCCAGAT GCTTCCTCTTCTGCTTCTCG
MYB SNP F9 CGACTCTTTCGGGACTCAAG TCGTCGGCGTTTAAGAAGTT
MYB SNP F10 TTACACCACCGTAACCGACA AGATGTGGATCGGATCAAGG
MYB SNP F11 AAGGAAGCCATGGAAGGACT ATGCTTCTACCAATGCCAGG
MYB SNP F12 TCGATCATCAGCAACCAAAA GCATTGAATTTTCCGTGGTT
MYB SNP F13 CCTGATCTTAAGCGTGGCTC TTTGGTGACGGAGTTGATGA
MYB SNP F14 GGCCATTGGAAAACTCAAAA TGGATGAAGAGCCTTTCACA
MYB SNP F15 ATCTTTGCCCAAAAATGCTG GCAATTACCTGCTTCCCAAA
MYB SNP F16 GAGAAGGGAAATGGCATCAA CTTTGGTGGAACTGGAAGGA
MYB SNP F17 TTCTTCAGCTCTCCAACGCT GGCTTGTGGTATTGTGAGCA
MYB SNP F18 CCCTTTCTAGCATATGGGCA AACATCCCTCCATATTCATGTGT

Table 4

Name, corresponding unigene code, and endonuclease name of CAPS primers"

序号
Code
引物名称
Primer name
unigene编号
unigene code
内切酶的名称
Endonuclease name
1 4CL CAPS1-1 unigene_17597 Ssp I
2 4CL CAPS2-1 unigene_17597 Ssp I
3 4CL CAPS3-1 unigene_17597 Ssp I
4 COMT CAPS1-1 unigene_04800 Cla I
5 COMT CAPS1-3 unigene_09002 Bsi YI
6 COMT CAPS1-5 unigene_08713 Ava III
7 COMT CAPS2-1 unigene_04800 Cla I
8 COMT CAPS2-3 unigene_09002 Bsi YI
9 COMT CAPS2-5 unigene_08713 Ava III
10 COMT CAPS3-1 unigene_04800 Cla I
11 COMT CAPS3-3 unigene_09002 Bsi YI
12 COMT CAPS3-5 unigene_08713 Ava III
13 MYB CAPS1 unigene_47261 Psi I
14 MYB CAPS2 unigene_17018 Mse I
序号
Code
引物名称
Primer name
unigene编号
unigene code
内切酶的名称
Endonuclease name
15 MYB CAPS3 unigene_53709 Mbo II
16 MYB CAPS5 unigene_64377 Mnl I
17 MYB CAPS6 unigene_10508 Mbo I
18 MYB CAPS7 unigene_21631 Mfe I
19 MYB CAPS8 unigene_31305 Sec I
20 MYB CAPS9 unigene_16840 Hpy99 I
21 MYB CAPS11 unigene_02399 Alu I
22 MYB CAPS12 unigene_02162 Asu I
23 MYB CAPS13 unigene_46122 Sec I
24 MYB CAPS14 unigene_10460 Tsp RI
25 MYB CAPS17 unigene_59879 Rsa I
26 MYB CAPS18 unigene_49512 Mae I

Fig. 2

Amplified and enzyme digestion result of CAPS primer COMT CAPS1-3 M: marker; 1-12: the code of 12 jute accessions used in this study."

Fig. 3

Dendrogram of 12 jute accessions based on CAPS markers"

[1] 熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008. pp 156-157.
Xiong H P. Breeding Science of Bast and Leaf Fiber Crops. Beijing: Chinese Agricultural Science and Technology Press, 2008. pp 156-157(in Chinese).
[2] 兰红艳, 张延辉. 麻类纤维的性能及其应用. 上海毛麻科技, 2009, ( 3):1-5.
Lan H Y, Zhang Y H. The properties and applications of bast fibers. Shanghai Hemp Technol, 2009, ( 3):1-5 (in Chinese with English abstract).
[3] 孔华, 郭安平, 郭运玲, 刘恩平, 贺立卡. 木质素生物合成及转基因调控研究进展. 热带农业工程, 2009,33(5):47-53.
Kong H, Guo A P, Guo Y L, Liu E P, He L K. Advances in study of lignin biosynthesis and its genetic manipulation. Trop Agric Engineer, 2009,33(5):47-53 (in Chinese with English abstract).
[4] Li J, Han G, Sun C, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav, 2019,14:1613131. doi: 10.1080/15592324.2019.16131 31.
doi: 10.1080/15592324.2019.1613131 pmid: 31084451
[5] 李利斌, 牛佳玉, 王永强, 杨宗辉, 杨桂兰, 侯丽霞, 刘淑梅, 曹齐卫, 孟昭娟. 分子标记技术在黄瓜农艺性状基因定位上的应用. 植物生理学报, 2019,55:1-13.
Li L B, Niu J Y, Wang Y Q, Yang Z H, Yang G L, Hou L X, Liu S M, Cao Q W, Meng Z J. Application of molecular markers in gene localization of cucumber (Cucumis sativus) agronomic. J Plant Physiol, 2019,55:1-13 (in Chinese with English abstract).
[6] 张明飞, 于卓, 于肖夏, 李景伟, 马艳红, 吴国芳, 王颖. 四倍体马铃薯SRAP分子遗传连锁图谱的构建. 草业学报, 2019,28(9):190-199.
Zhang M F, Yu Z, Yu X X, Li J W, Ma Y H, Wu G F, Wang Y. Construction of a genetic linkage map for tetraploid potato based on SRAP markers. Acta Pratac Sin, 2019,28(9):190-199 (in Chinese with English abstract).
[7] Yang X, Zhang Y, Cheng Y F, Chen X H. Transcriptome analysis reveals multiple signal network contributing to the Verticillium wilt resistance in eggplant. Sci Hortic, 2019,256. doi: 10.1016/j.scienta.2019.108576.
[8] Zhang Z H, Cao B L, Li N, Chen Z J, Xu K. Comparative transcriptome analysis of the regulation of ABA signaling genes in different rootstock grafted tomato seedlings under drought stress. Environ Exp Bot, 2019,166. doi: 10.1016/j.envexpbot.2019. 103814.
[9] 贾昌路, 张瑶, 朱玲, 张锐. 转录组测序技术在生物测序中的应用研究进展. 分子植物育种, 2015,13:2388-2394.
Jia C L, Zhang Y, Zhu L, Zhang R. Application progress of transcriptome sequencing technology in biological. Mol Plant Breed, 2015,13:2388-2394 (in Chinese with English abstract).
[10] 王尧龙, 黄璐琦, 袁媛, 查良平. 药用植物转录组研究进展. 中国中药杂志, 2015,11:2055-2061.
Wang Y L, Huang L Q, Yuan Y, Zha L P. Research advances on analysis of medicinal plants transcriptome. Chin J Chin Mater Med, 2015,11:2055-2061 (in Chinese with English abstract).
[11] 肖炳光, 邱杰, 曹培健, 桂毅杰, 卢秀萍, 李永平, 樊龙江. 利用基因组简约法开发烟草SNP 标记及遗传作图. 作物学报, 2014,40:397-404.
doi: 10.3724/SP.J.1006.2014.00397
Xiao B G, Qiu J, Cao P J, Gui Y J, Lu X P, Li Y P, Fan L J. Development and genetic mapping of SNP markers via genome complexity reduction in tobacco. Acta Agron Sin, 2014,40:397-404 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00397
[12] Tao A F, Huang L, Wu G F, Reza K A, Qi J M, Xu J T, Fang P P, Lin L H, Zhang L W, Lin P Q. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. BMC Genomics, 2017,18:355.
doi: 10.1186/s12864-017-3712-8 pmid: 28482802
[13] Hayden M J, Tabone T, Mather D E. Development and assessment of simple PCR markers for SNP genotyping in barley. Theor Appl Genet, 2009,119:939-951.
pmid: 19597725
[14] 束永俊, 李勇, 柏锡, 才华, 纪巍, 朱延明. 基于基因重测序信息的大豆基因靶向CAPS标记开发. 作物学报, 2009,35:2015-2021.
Shu Y J, Li Y, Bai X, Cai H, Ji W, Zhu Y M. Development of soybean gene-driven functional CAPS markers based on gene re-sequencing. Acta Agron Sin, 2009,35:2015-2021 (in Chinese with English abstract).
[15] 杨广阔, 陈子强, 陈在杰, 苏军, 陈松彪, 王锋. 基于二代测序数据开发以93-11为亲本的水稻SNP-dCAPS 标记的研究实例. 分子植物育种, 2014,12:1288-1295.
Yang G K, Chen Z Q, Chen Z J, Su J, Chen S B, Wang F. Developing rice SNP-dCAPS markers based on next generation re-sequencing data of 93-11 as parental line, a case study. Mol Plant Breed, 2014,12:1288-1295 (in Chinese with English abstract).
[16] 王彩芬, 刘冬成, 马晓玲, 安永平, 张文银, 马静. 水稻耐盐基因SKC1 特异性CAPS 标记的开发与验证. 分子植物育种, 2015,13:2437-2440.
Wang C F, Liu D C, Ma X L, An Y P, Zhang W Y, Ma J. Development and validation of the specific CAPS markers of rice salt tolerant gene. Mol Plant Breed, 2015,13:2437-2440 (in Chinese with English abstract).
[17] 司文洁, 吴林楠, 郭利建, 周梦蝶, 刘香利, 马猛, 赵惠贤. 小麦粒重相关基因TaCYP78A5功能标记开发及验证. 作物学报, 2019,12:1905-1911.
Si W J, Wu L N, Guo L J, Zhou M D, Liu X L, Ma M, Zhao H X. Development and validation of the functional marker of grain weight-related gene TaCYP78A5 in wheat (Triticum aestivum L.). Acta Agron Sin, 2019,12:1905-1911 (in Chinese with English abstract).
[18] 雷天刚, 何永睿, 彭爱红, 许兰珍, 刘小丰, 姚利晓, 邹修平, 江东, 陈善春. 柑橘CAPS标记和AS-PCR引物的开发. 园艺学报, 2012,39:1027-1034.
Lei T G, He Y R, Peng A H, Xu L Z, Liu X F, Yao L X, Zou X P, Jiang D, Chen S C. Development of CAPS markers and allele-specific PCR primers in citrus. Acta Hortic Sin, 2012,39:1027-1034 (in Chinese with English abstract).
[19] 阚帅帅. 玉米主效抗丝黑穗病候选基因预测及dCAPS标记开发. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2012.
Kan S S. Major Resistance Candidate Gene Prediction and dCAPS Markers Development of Head Smut in Maize. MS Thesis of Northeast Agriculture University, Harbin, Heilongjiang, China, 2012 (in Chinese with English abstract).
[20] 朱文文, 徐建飞, 李广存, 段绍光, 刘杰, 卞春松, 庞万福, Walter D J, 金黎平. 马铃薯块茎形状基因CAPS 标记的开发与验证. 作物学报, 2015,41:1529-1536.
Zhu W W, Xu J F, Li G C, Duan S G, Liu J, Bian C S, Pang W F, Walter D J, Jin L P. Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agron Sin, 2015,41:1529-1536 (in Chinese with English abstract).
[21] 尚小红, 周慧文, 严华兵, 肖亮, 陈新. 木薯块根肉质颜色基因CAPS标记的开发与验证. 分子植物育种, 2018,16:873-879.
Shang X H, Zhou H W, Yan H B, Xiao L, Chen X. Development and verification of a CAPS marker for color gene in cassava tuber. Mol Plant Breed, 2018,16:873-879 (in Chinese with English abstract).
[22] 陶爱芬, 徐建堂, 祁建民, 吴建梅, 粟建光, 林培清, 李爱青, 李木兰, 方平平, 林荔辉. SRAP和ISSR及两种方法结合在分析黄麻属起源与演化上的比较. 作物学报, 2011,37:2277-2284.
Tao A F, Xu J T, Qi J M, Wu J M, Su J G, Lin P Q, Li A Q, Li M L, Fang P P, Lin L H. Method comparison of using SRAP and ISSR and combination of both in origin and evolution of jute. Acta Agron Sin, 2011,37:2277-2284 (in Chinese with English abstract).
[23] 陶爱芬, 祁建民, 李木兰, 方平平, 林荔辉, 徐建堂. SRAP 结合ISSR 方法分析黄麻属的起源与演化. 中国农业科学, 2012,45:16-25.
Tao A F, Qi J M, Li M L, Fang P P, Lin L H, Xu J T. Origin and evolution of jute analysed by SRAP and ISSR methods. Sci Agric Sin, 2012,45:16-25 (in Chinese with English abstract).
[24] 巫桂芬, 徐鲜均, 徐建堂, 陶爱芬, 张立武, 魏丽真, 潘漠, 方平平, 林荔辉, 祁建民. 利用SRAP、ISSR、SSR标记绘制黄麻基因源分子指纹图谱. 作物学报, 2015,41:367-377.
Wu G F, Xu X J, Xu J T, Tao A F, Zhang L W, Wei L Z, Pan M, Fang P P, Lin L H, Qi J M. Construction of molecular fingerprinting map in gene pool of jute with SRAP, ISSR, and SSR markers. Acta Agron Sin, 2015,41:367-377 (in Chinese with English abstract).
[25] Kundu A, Chakraborty A, Mandal N A, Das D, Karmakar P G, Singh N K, Sarkar D. A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.). Mol Breed, 2015,35:19.
[26] Topdar N, Kundu A, Sinha M K, Sarkar D, Das M, Banerjee S, Kar C S, Satya P, Balyan H S, Mahapatra B S. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.). Cytol Genet, 2013,47:129-137.
[27] 张立武, 袁民航, 何雄威, 刘星, 方平平, 林荔辉, 陶爱芬, 徐建堂, 祁建民. GenBank数据库中黄麻EST-SSR标记的开发及其通用性评价. 作物学报, 2014,40:1213-1219.
Zhang L W, Yuan M H, He X W, Liu X, Fang P P, Lin L H, Tao A F, Xu J T, Qi J M. Development and universality evaluation of EST-SSR markers from GenBank in jute. Acta Agron Sin, 2014,40:1213-1219 (in Chinese with English abstract).
[28] Das M, Banerjee S, Dhariwal R, Vyas S, Mir R R, Topdar N, Kundu A, Khurana J P, Tyagi A K, Sarkar D, Sinha M K, Balyan H S, Gupta P K. Development of SSR markers and construction of a linkage map in jute. J Genet, 2012,91:21-31.
pmid: 22546823
[29] 陶爱芬, 陈婉婷, 祁建民, 徐建堂, 林荔辉, 林培清, 张立武, 方平平. 基于转录组测序的黄麻SSR分子标记开发与初步验证. 中国农业大学学报, 2018,23(6) : 24-33.
Tao A F, Chen W T, Qi J M, Xu J T, Lin L H, Lin P Q, Zhang L W, Fang P P. Development and identification of SSR molecular markers based on transcriptome sequences of jute (Corchorus capsularis L.). J China Agric Univ, 2018,23(6):24-33 (in Chinese with English abstract).
[30] Biswas C, Dey P, Karmakar P G, Satpathy S. Discovery of large-scale SNP markers and construction of linkage map in a RIL population of jute (Corchorus capsularis). Mol Breed, 2015,35:119.
[31] 陶爱芬, 谢丽丽, 祁建民, 方平平, 林荔辉, 徐建堂, 张立武, 林培清. 与黄麻炭疽病抗性相关的SSR分子标记筛选及新型SNP标记开发. 福建农林大学学报(自然科学版), 2017,46(1):27-33.
Tao A F, Xie L L, Qi J M, Fang P P, Lin L H, Xu J T, Zhang L W, Lin P Q. Screening of SSR markers and developing of newly SNP markers associated with anthracnose resistance in Corchorus capsularis. J Fujian Agric For Univ(Nat Sci Edn), 2017,46(1):27-33 (in Chinese with English abstract).
[32] Zhao Y, Wang K, Wang W L, Yin T T, Dong W Q, Xu C J. A high-throughput SNP discovery strategy for RNA-seq data. BMC Genomics, 2019,20:160. doi: 10.1186/s12864-019-5533-4.
pmid: 30813897
[33] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979,76:5269-5273.
doi: 10.1073/pnas.76.10.5269 pmid: 291943
[34] 王振玉, 李威, 周晓箭, 裴小雨, 刘艳改, 周克海, 张文生, 孟清芹, 王海风, 葛勇, 李莹, 刘俊芳, 马雄风, 杨代刚. 棉花单核苷酸多态性标记研究进展. 棉花学报, 2016,28:399-406.
doi: 10.11963/issn.1002-7807.201604012
Wang Z Y, Li W, Zhou X J, Pei X Y, Liu Y G, Zhou K H, Zhang W S, Meng Q Q, Wang H F, Ge Y, Li Y, Liu J F, Ma X F, Yang D G. Review of single nucleotide polymorphism markers in cotton. Cotton Sci, 2016,28:399-406 (in Chinese with English abstract).
doi: 10.11963/issn.1002-7807.201604012
[35] 郭海洋. 基于HRM技术的水稻全基因组SNP标记开发及其初步应用. 华南农业大学硕士学位论文, 广东广州, 2016.
Guo H Y. Development of Rice SNP Marker Based on HRM Technology and Its Application in Gene Location. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2016 (in Chinese with English abstract).
[36] Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalskiet A J. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2002,3:19.
doi: 10.1186/1471-2156-3-19 pmid: 12366868
[37] Lam H M, Xu X, Liu X. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010,42:1053-1059.
doi: 10.1038/ng.715 pmid: 21076406
[38] 张成才. 茶树SNP标记的开发与应用. 中国农业科学院硕士学位论文, 北京, 2012.
Zhang C C. The Development and Applications of SNP Markers in Tea Plants (Camellia sinensis). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with English abstract).
[39] Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V. Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet, 2005,110:425-431.
doi: 10.1007/s00122-004-1833-3 pmid: 15650816
[40] Alencar S, Silva J O, Togawa R. SNP discovery in apple cultivars using next generation sequencing. BMC Proce, 2011,5:42.
[41] Thakur S, Singh P K, Rathour R, Variar M, Prashanthi S K, Gopalakrishnan S, Singh A K, Singh U D, Chand D, Singh N K, Sharma T R. Genotyping and development of single-nucleotide polymorphism (SNP) markers associated with blast resistance genes in rice using Golden Gate assay. Mol Breed, 2014,34:1449-1463.
doi: 10.1007/s11032-014-0129-9
[42] 潜宗伟, 陈海丽, 崔彦玲. 菠菜转录组SSR位点分析及其分子标记的开发. 农业生物技术学报, 2016,24:1688-1697.
Qian Z W, Chen H L, Cui Y L. Analysis of the SSR Loci and development of molecular markers in Spinacia oleracea transcriptome. Chin J Agric Biotechol, 2016,24:1688-1697 (in Chinese with English abstract).
[1] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[4] GUO Yan-Chun, YAO Jia-Yu, ZHANG Rong-Bin, CHEN Si-Yuan, HE Qing-Yao, TAO Ai-Fen, FANG Ping-Ping, QI Jian-Min, ZHANG Lie-Mei, ZHANG Li-Wu. Identification and phylogenetic analysis of the pathogen of jute anthracnose in China [J]. Acta Agronomica Sinica, 2022, 48(3): 770-777.
[5] YANG Jin, BAI Ai-Ning, BAI Xue, CHEN Juan, GUO Lin, LIU Chun-Ming. Phenotypic and genetic analyses of a rice mutant eed1 with defected embryo and endosperm development [J]. Acta Agronomica Sinica, 2022, 48(2): 292-303.
[6] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[7] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[8] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[9] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
[10] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[11] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[12] LI Fu, WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming. Characterization of the expression profiling of circRNAs in the barks of stems in ramie [J]. Acta Agronomica Sinica, 2021, 47(6): 1020-1030.
[13] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
[14] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[15] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!