Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1988-2000.doi: 10.3724/SP.J.1006.2021.04233

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean

WANG Shi-Ya1,2(), ZHENG Dian-Feng1,4,*(), FENG Nai-Jie1,4,*(), LIANG Xi-Long2,3, XIANG Hong-Tao5, FENG Sheng-Jie1, JIN Dan2, LIU Mei-Ling2, MU Bao-Min2   

  1. 1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
    2College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
    3Plant Growth Regulator Engineering Research Center, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China
    4Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, Guangdong, China
    5Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2020-10-28 Accepted:2021-01-13 Online:2021-10-12 Published:2021-02-20
  • Contact: ZHENG Dian-Feng,FENG Nai-Jie E-mail:wsy1106ok@126.com;zdffnj@163.com;byndfnj@126.com
  • Supported by:
    National Natural Science Foundation of China(31871576);National Key Research and Development Program of China(2019YFD1002205);Key Project of Natural Science Foundation of Heilongjiang(ZD2017003);Graduate Innovation Research Projects of Heilongjiang Bayi Agriculture University(YJSCX2019-Y96)

Abstract:

To explore the effects of waterlogging stress on the physiological characteristics and microstructure of soybean and the mitigation effect of S3307, the physiological characteristics of soybean leaves and roots, the microstructure of hypocotyls and the regulation effect of S3307 were investigated using Kenfeng 14 as the experimental material with S3307 sprayed on the leaves of soybean at V1 stage and five days after waterlogging stress in a pot experiment. The results showed that waterlogging stress increased the number of ventilated tissues in soybean hypocotyl, and the area of ventilated tissues increased gradually with the prolongation of waterlogging stress. S3307 could improve soybean adaptability to waterlogging adversity, increase the number of ventilated tissue and cope with the hypoxia stress by waterlogging stress on plants. Compared with CK, waterlogging stress increased the accumulation of ROS and membrane lipid peroxidation in leaves and roots, and gradually increased with the prolongation of stress time. Meanwhile, the activity of enzymatic antioxidant defense system was enhanced at early stage under waterlogging stress, resulting in an increase in the content of osmotic regulatory substances, which decreased with the prolongation of stress time. S3307 can promote the activity of antioxidant enzyme in leaves and roots, inhibit the excessive accumulation of ROS and MDA content, maintain a high content of osmotic regulation substances, and alleviate the damage caused by waterlogging stress. In summary, there were differences in response to different organs under waterlogging stress. S3307 can alleviate the damage to soybean plants caused by waterlogging stress to a certain extent.

Key words: waterlogging stress, soybean, uniconazole (S3307), physiological characteristics, microstructure

Table 1

Experiment design"

处理编号
Treatment code
药剂处理
Pharmaceutical treatment
水分处理
Water treatment
CK 清水喷施 Spray water 适宜土壤水分 Suitable soil moisture
W 清水喷施 Spray water 淹水胁迫 Waterlogging stress
S S3307喷施 Spray S3307 淹水胁迫 Waterlogging stress

Table 2

Effects of S3307 on aboveground morphological traits under waterlogging stress at V1 stage in soybean"

指标
Trait
处理
Treatment
淹水天数 Waterlogging days
0 d 1 d 3 d 5 d 7 d
株高
Plant height (cm)
CK 16.32±0.502 a 16.81±0.336 a 20.09±0.360 a 21.31±0.523 a 21.82±0.666 a
W 15.96±0.471 a 16.81±0.756 a 16.91±0.724 b 17.13±0.535 b 17.25±0.544 b
S 12.87±0.694 b 13.22±0.305 b 13.53±0.510 c 13.80±0.317 c 14.05±0.464 c
茎粗
Stem diameter (mm)
CK 2.82±0.078 b 2.86±0.067 b 2.86±0.015 b 2.87±0.031 c 2.94±0.050 b
W 2.84±0.075 b 2.90±0.036 b 2.98±0.042 a 3.02±0.020 b 3.08±0.015 a
S 2.98±0.030 a 3.00±0.038 a 3.04±0.040 a 3.09±0.015 a 3.11±0.025 a
叶面积
Leaf areas (mm2)
CK 3598.50±239.881 a 3689.56±199.213 a 3576.06±208.030 a 3837.35±67.895 a 3956.45±55.776 a
W 3289.21±143.851 ab 3384.60±141.800 ab 3542.72±81.976 a 3505.03±45.032 b 3519.19±33.713 b
S 3129.26±173.781 b 3239.22±108.931 b 3188.17±68.382 b 3232.09±111.343 c 3326.58±87.010 c

Fig. 1

Effects of S3307 on aerenchyma number and area in leaves and roots under waterlogging stress at V1 stage in soybean Treatments are the same as those given in Table 1."

Fig. 2

Effects of S3307 on microstructure of hypocotyl under waterlogging stress at V1 stage in soybean 1 and 2 show W treatment for 0 day of waterlogging treatment; 3 and 4 show S treatment for 0 day of waterlogging treatment; 5 and 6 show W treatment for 1 day of waterlogging treatment; 7 and 8 show S treatment for 1 day of waterlogging treatment; 9, 10 and 11 show W treatment for 3 days of waterlogging treatment; 12, 13, and 14 show S treatment for 3 days of waterlogging treatment; 15, 16, and 17 show W treatment for 5 days of waterlogging treatment; 18, 19, and 20 show S treatment for 5 days of waterlogging treatment; 21, 22, and 23 show W treatment for 7 days of waterlogging treatment; 24, 25, and 26 show S treatment for 7 days of waterlogging treatment. Treatments are the same as those given in Table 1."

Fig. 3

Effects of S3307 on MDA content of leaves and roots under waterlogging stress at V1 stage in soybean Treatments are the same as those given in Table 1. Different lowercase letters in the same day mean significantly different among different treatments at the 0.05 probability level."

Fig. 4

Effects of S3307 on O2- production rate and H2O2 content of leaves and roots under waterlogging stress at V1 stage in soybean Treatments are the same as those given in Table 1. Different lowercase letters in the same day mean significantly different among different treatments at the 0.05 probability level."

Fig. 5

Effects of S3307 on enzymatic antioxidant system of leaves and roots under waterlogging stress at V1 stage in soybean Treatments are the same as those given in Table 1. Different lowercase letters in the same day mean significantly different among different treatments at the 0.05 probability level."

Fig. 6

Effects of S3307 on osmotic regulating substance of leaves and roots under waterlogging stress at V1 stage in soybean Treatments are the same as those given in Table 1. Different lowercase letters in the same day mean significantly different among different treatments at the 0.05 probability level."

[1] Kim Y, Seo C W, Khan A L, Mun B G, Shahzad R, Ko J W, Yun B W, Park S K, Lee I J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol, 2018, 18:254.
doi: 10.1186/s12870-018-1457-4
[2] Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol Biochem, 2020, 148:228-236.
doi: 10.1016/j.plaphy.2020.01.020
[3] 成添, 胡继超, 李映雪, 谢晓金, 李永秀. 淹涝胁迫对水稻植株叶片光合性能的影响. 气象与环境科学, 2019, 42(1):26-33.
Cheng T, Hu J C, Li Y X, Xie X J, Liu Y X. Effects of flooding stress on leave's photosynthetic capability of paddy rice. Meteorol Environ Sci, 2019, 42(1):26-33 (in Chinese with English abstract).
[4] Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics, 2017, 169:225-232.
doi: 10.1016/j.jprot.2017.01.014
[5] Hasanuzzaman M, Mahmud J A, Nahar K, Anee T I, Fujita M. Responses, adaptation, and ROS metabolism in plants exposed to waterlogging stress. In: Khan M I R, Khan N A, eds. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Berlin, Germany: Springer, 2017. pp 257-281.
[6] Chapman J M, Muhlemann J K, Gayomba S R, Muday G K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol, 2019, 32:370-396.
doi: 10.1021/acs.chemrestox.9b00028 pmid: 30781949
[7] Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics, 2018, 172:201-215.
doi: S1874-3919(17)30377-9 pmid: 29133124
[8] 李秀芬, 郭昭滨, 朱海霞, 王萍, 宫丽娟, 姜丽霞, 赵慧颖. 黑龙江省大豆生长季旱涝时序特征及其对产量的影响. 应用生态学报, 2020, 31:1223-1232.
Li X F, Guo Z B, Zhu H X, Wang P, Gong L J, Jiang H X, Zhao H Y. Time-series characteristics of drought and flood in spring soybean growing season and its effect on soybean yield in Heilongjiang. Chin J Appl Ecol, 2020, 31:1223-1232 (in Chinese with English abstract).
[9] 姜丽霞, 朱海霞, 闫敏慧, 闫平, 王晾晾, 韩俊杰, 高明, 吕佳佳, 纪仰慧, 王萍. 黑龙江省主汛期异常降水变化及其与洪涝的关系研究. 灾害学, 2019, 34(2):1-6.
Jiang L X, Zhu H X, Yan M H, Yan P, Wang L L, Han J J, Gao M, Lyu J J, Ji Y H, Wang P. Changes of abnormal rainfall and relationship between precipitation and flood during main flood seasons of Heilongjiang province. J Catastrophol, 2019, 34(2):1-6 (in Chinese with English abstract).
[10] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆农艺性状及生理生化指标的影响. 中国油料作物学报, 2017, 39:655-663.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F. Effects of uniconazole on alleviation of waterlogging stress in soybean. Chin J Oil Crop Sci, 2017, 39:655-663 (in Chinese with English abstract).
[11] 于奇, 冯乃杰, 王诗雅, 左官强, 郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响. 作物学报, 2019, 45:1080-1089.
Yu Q, Feng N J, Wang S Y, Zuo G Q, Zheng D F. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress. Acta Agron Sin, 2019, 45:1080-1089 (in Chinese with English abstract).
[12] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰. 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响. 中国油料作物学报, 2016, 38:611-618.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F. Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress. Chin J Oil Crop Sci, 2016, 38:611-618 (in Chinese with English abstract).
[13] 王景伟, 黄玉兰, 金喜军, 张玉先. 干旱胁迫下烯效唑拌种对芸豆保护酶活性及渗透调节物质的影响. 江苏农业科学, 2017, 45(12):59-61.
Wang J W, Huang Y L, Jin X J, Zhang Y X. Effects of uniconazole seed dressing on the activities of protective enzymes and osmotic adjustment substances of kidney bean under drought stress. Jiangsu Agric Sci, 2017, 45(12):59-61 (in Chinese with English abstract).
[14] 杨崇庆, 曹秀霞, 张炜, 陆俊武, 钱爱萍, 剡宽将. 叶面喷施烯效唑对旱地胡麻抗倒性和产量性状的影响. 干旱地区农业研究, 2017, 35(3):49-52.
Yang C Q, Cao X X, Zhang W, Lu J W, Qian A P, Yan K J. Effect of uniconazole foliage spraying on lodging resistance and yield traits of oil-flax in arid land. Agric Res Arid Areas, 2017, 35(3):49-52 (in Chinese with English abstract).
[15] 刘春娟, 宋双伟, 冯乃杰, 郑殿峰, 宫香伟, 孙秋霞, 邢豹, 高杰, 吕金莹. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响. 干旱地区农业研究, 2016, 34(6):222-227.
Liu C J, Song S W, Feng N J, Zheng D F, Gong X W, Sun Q X, Xing B, Gao J, Lyu J Y. Effects of plant growth regulator S3307 on morphological and physiological characteristics of soybean seedling under drought stress and rewater treatment. Agric Res Arid Areas, 2016, 34(6):222-227 (in Chinese with English abstract).
[16] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 167-169, 184-185.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experimental. Beijing: Higher Education Press, 2000. pp 167-169, 184-185(in Chinese).
[17] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 221-224.
Gao J F. Experimental Instruction in Plant Physiology. Beijing: Higher Education Press, 2006. pp 221-224(in Chinese).
[18] Chakrabarty D, Datta S K J A P P, Micropropagation of gerbera: lipid peroxidation and antioxidant enzyme activities during acclimatization process. Physiol Plant, 2008, 30:325-331.
[19] 张宪政. 作物生理研究法. 北京: 中国农业出版社, 1992. pp 201-202.
Zhang X Z. Crop Physiology Research Method. Beijing: China Agriculture Press, 1992. pp 201-202(in Chinese).
[20] 左官强, 王诗雅, 王新欣, 梁喜龙, 余明龙, 吴琼, 冯乃杰, 郑殿峰. 基于Planteye F500三维定量研究淹水胁迫下烯效唑对大豆的生长调控. 中国油料作物学报, 2020, 42:271-276.
Zuo G Q, Wang S Y, Wang X X, Liang X L, Yu M L, Wu Q, Feng N J, Zheng D F. 3D quantification on regulatory effects of uniconazole on soybean growth under flooding stress based on Planteye F500. Chin J Oil Crop Sci, 2020, 42:271-276 (in Chinese with English abstract).
[21] 左官强, 王诗雅, 冯乃杰, 王新欣, 牟保民, 郑殿峰. 烯效唑对淹水胁迫下大豆光合生理及表型的影响. 生态学杂志, 2019, 38:2702-2708.
Zuo G Q, Wang S Y, Feng N J, Wang X X, Mou B M, Zheng D F. Effects of uniconazole on photosynthetic physiology and phenotype of soybean under flooding stress. Chin J Ecol, 2019, 38:2702-2708 (in Chinese with English abstract).
[22] 田一丹, 韩亮亮, 周琴, 张国正, 邢邯, 江海东. 大豆对渍水的生理响应: I. 光合特性和糖代谢. 中国油料作物学报, 2012, 34:262-267.
Tian Y D, Han L L, Zhou Q, Zhang G Z, Xing H, Jiang H D. Physiolofical response of soybean to waterlogging: I. Photosynthetic characteristics and sugar metabolism. Chin J Oil Crop Sci, 2012, 34:262-267 (in Chinese with English abstract).
[23] Takahashi H, Qi X H, Shimamura S, Yanagawa A, Hiraga S, Nakazono M. Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions. Ann Bot, 2018, 121:723-732.
doi: 10.1093/aob/mcx205
[24] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53:3479-3495.
Wang Q, Zhao X Y, Liu D R, Yan Z H, Li H P, Dong P F, Li C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Sci Agric Sin, 2020, 53:3479-3495 (in Chinese with English abstract)
[25] Park S U, Lee C J, Kim S E, Lim Y H, Lee H U, Nam S S, Kim H S, Kwak S S. Selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. Plant Physiol Biochem, 2020, 155:243-251.
doi: 10.1016/j.plaphy.2020.07.039
[26] 高兰阳, 蔡庆生, 王庆亚, 沈益新. 一年生野生大豆根系及胚轴皮层通气组织发育观察. 西北植物学报, 2008, 28:2380-2384.
Gao L Y, Cai Q S, Wang Q Y, Shen Y X. Development of aerenchyma in root and hypocotyl of annual wild soybean (Glycine soja Sieb. et Zucc.). Acta Bot Boreali-Occident Sin, 2008, 28:2380-2384 (in Chinese with English abstract).
[27] 王寒, 高敏, 金梦灿, 郜红建. 淹水胁迫对玉米苗期根系形态与养分吸收累积的影响. 安徽农业大学学报, 2018, 45:538-544.
Wang H, Gao M, Jin M C, Gao H J. Influences of waterlogging stress on morphology and nutrient uptake of maize roots at seedling stage. J Anhui Agric Univ, 2018, 45:538-544 (in Chinese with English abstract).
[28] 宋晓慧, 张智杰, 李春光, 张代平, 韩英鹏, 李冬梅, 李文滨. 淹水时间对不同耐涝性大豆品种苗期根部形态和叶部生理指标的影响. 大豆科学, 2014, 33:70-72.
Song X H, Zhang Z J, Li C G, Zhang D P, Han Y P, Li D M, Li W B. Effect of waterlogging time on root morphology and foliar physiological indexes of soybean varieties. Soybean Sci, 2014, 33:70-72 (in Chinese with English abstract).
[29] 余燕, 张雅婷, 赵雪, 徐婷, 姜玉晴, 刘廷府, 周可金. H2O2浸种对低温胁迫下花生种子萌发的调控作用. 中国油料作物学报, 2020, 42:860-868.
Yu Y, Zhang Y T, Zhao X, Xu T, Jiang Y Q, Liu T F, Zhou K J. Effects of seed soaking with H2O2 on seed germination of peanut under low temperature conditions. Chin J Oil Crop Sci, 2020, 42:860-868 (in Chinese with English abstract).
[30] 顾诗云, 杨飞, 张毅敏, 张志伟, 谢科夫, 管祥洋. 淹水胁迫对菖蒲生理特性及其根际细菌群落特征的影响. 生态与农村环境学报, 2020, 36:488-498.
Gu S Y, Yang F, Zhang Y M, Zhang Z W, Xie K F, Guan X Y. Effects of flooding stress on physiological characteristics and rhizosphere bacterial community of Acorus calamus. J Ecol Rural Environ, 2020, 36:488-498 (in Chinese with English abstract).
[31] 潘雅楠, 沈永宝, 尹中明, 宋明, 金政. 淹水胁迫对3个基因型东方杉幼苗生理生化的影响. 安徽农业大学学报, 2020, 47:82-87.
Pan Y N, Shen Y B, Yin Z M, Song M, Jin Z. Effects of waterlogging stress on physiology and biochemistry of three genotypes of Taxodium mucronatum × Cryptomera fortunei. J Anhui Agric Univ, 2020, 47:82-87 (in Chinese with English abstract).
[32] 齐玉军, 方传文, 邢兴华, 徐泽俊, 王晓军, 孙东雷, 卞能飞, 王幸. 外源二乙基二硫代氨基甲酸钠对花期淹水大豆根系抗氧化系统的影响. 中国油料作物学报, 2019, 41:577-587.
Qi Y J, Fang C W, Xing X H, Xu Z J, Wang X J, Sun D L, Bian N F, Wang X. Effect of exogenous sodium diethyldithiocarbamate on antioxidation system in soybean root on waterlogging at flowering stage. Chin J Oil Crop Sci, 2019, 41:577-587 (in Chinese with English abstract).
[33] 李琬, 项洪涛, 何宁, 王雪扬, 王彤彤, 王曼力, 唐晓东, 李一丹. 烯效唑对苗期低温胁迫下红小豆产量及茎部抗逆生理指标的影响. 干旱地区农业研究, 2020, 38(2):199-206.
Li W, Xiang H T, He N, Wang X Y, Wang T T, Wang M L, Tang X D, Li Y D. Effects of uniconazole on yield and stem anti-stress physiology of adzuki bean under low temperature stress during seedling stage. Agric Res Arid Areas, 2020, 38(2):199-206 (in Chinese with English abstract).
[34] 项洪涛, 李琬, 何宁, 王雪扬, 郑殿峰, 王彤彤, 梁晓艳, 唐晓东, 李一丹. 苗期低温胁迫下烯效唑对红小豆根系抗寒生理及产量的影响. 草业学报, 2019, 28(7):92-102.
Xiang H T, Li W, He N, Wang X Y, Zheng D F, Wang T T, Liang X Y, Tang X D, Li Y D. Effects of S3307 on physiology of chilling resistance in root and yield of adzuki bean under low temperature stress during seeding stage. Acta Pratac Sin, 2019, 28(7):92-102 (in Chinese with English abstract).
[35] 孟娜, 魏胜华. 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害. 生态学杂志, 2018, 37:3605-3609.
Meng N, Wei S H. Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots. Chin J Ecol, 2018, 37:3605-3609 (in Chinese with English abstract).
[36] Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. Plant J, 2018, 96:1106-1120.
doi: 10.1111/tpj.2018.96.issue-6
[37] Li C, Han Y, Hao J, Qin X, Liu C, Fan S. Effects of exogenous spermidine on antioxidants and glyoxalase system of lettuce seedlings under high temperature. Plant Signal Behav, 2020, 15:1824697.
doi: 10.1080/15592324.2020.1824697
[38] Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T J P. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci, 2002, 163:117-123.
doi: 10.1016/S0168-9452(02)00080-8
[39] Garcia N, Dasilva C J, Cocco K L T, Pomagualli D, De Oliveira F K, Silva J V L D, De Oliveira A C B, Amarante L D J E, Botany E. Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environ Exp Bot, 2020, 172:103975.
doi: 10.1016/j.envexpbot.2020.103975
[40] 徐涛, 才硕, 时红, 时元智, 谢亨旺, 刘方平, 梁举. 拔节期淹水胁迫对水稻叶片酶活性及产量的影响. 中国农村水利水电, 2020, (11):89-93.
Xu T, Cai S, Shi H, Shi Z Y, Xie H W, Liu F P, Liang J. The effects of different flooding stresses on enzymatic activity of the blade and the yidld of tice at elongation stage. Chin Rural Water & Hydropower, 2020, (11):89-93 (in Chinese with English abstract).
[41] Liu Y, Zhao Z, Si J, Di C, Han J, An L. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul, 2009, 59:207-214.
doi: 10.1007/s10725-009-9405-9
[42] 白爱兴, 鲁晓燕. 钙和钙效应剂对NaCl胁迫下酸枣幼苗抗氧化系统及渗透调节物质含量的影响. 植物生理学报, 2020, 56:1910-1920.
Bai A X, Lu X Y. Effect of calcium and calcium effectors on antioxidant system and osmotic adjustment substances content of sour jujube (Ziziphus jujuba var. spinosa) seedlings under NaCl stress. Acta Phytophysiol Sin, 2020, 56:1910-1920 (in Chinese with English abstract).
[43] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46:1760-1770.
Zhang H Y, Wang B Q, Feng X Y, Li G L, Xie B T, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato. Acta Agron Sin, 2020, 46:1760-1770 (in Chinese with English abstract).
[44] 姜颖, 左官强, 王晓楠, 张晓艳, 韩承伟, 韩喜财, 曹焜, 赵越, 孙宇峰, 冯乃杰. 烯效唑浸种对干旱胁迫下工业大麻幼苗形态、渗透调节物质及内源激素的影响. 干旱地区农业研究, 2020, 38(3):74-80.
Jiang Y, Zuo G Q, Wang X N, Zhang X Y, Han C W, Han X C, Cao K, Zhao Y, Sun Y F, Feng N J. Effects of soaking seeds with uniconazole on morphology, osmotic regulators and endogenous hormones of industrial hemp. Agric Res Arid Areas, 2020, 38(3):74-80 (in Chinese with English abstract).
[45] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响. 作物学报, 2021, 47:494-506.
Xiang H T, Li W, Zheng D F, Wang S Y, He N, Wang M L, Yang C J. Effects of uniconazole on the physiology and yield of adzuki bean under waterlogging stress in seedling stage. Acta Agron Sin, 2021, 47:494-506 (in Chinese with English abstract).
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[14] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!