Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 2001-2011.doi: 10.3724/SP.J.1006.2021.04238

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress

XIN Zheng-Qi1(), DAI Huan-Huan2, XIN Yu-Feng1, HE Xiao1, XIE Hai-Yan1, WU Neng-Biao1,*()   

  1. 1School of Life Science, Southwest University / Key Laboratory of Eco-environments in Three Gorges Region, Ministry of Education, Chongqing 400715, China
    2The Fifth Middle School of Qingyang, Qingyang 745000, Gansu, China
  • Received:2020-11-01 Accepted:2021-01-13 Online:2021-10-12 Published:2021-02-25
  • Contact: WU Neng-Biao E-mail:490992699@qq.com;wunb@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(30500041)

Abstract:

To explore the physiological mechanism of exogenous 2,4-Epibrassinolide (EBR) regulating NaCl tolerance of A. belladonna, potted A. belladonna seedlings was used as the experimental materials, and exogenous EBR was applied to A. belladonna seedlings with the different concentrations (0.05, 0.1, 0.2, and 0.4 mg L-1) of exogenous EBR and different treatment times (5, 10, 15, and 20 days) on the nitrogen metabolism, the contents of the secondary metabolites and precursor substances in the synthesis pathway of TAs, and the relative expression levels of key enzyme genes. NaCl stress caused inhibitory effect on nitrogen metabolism in A. belladonna, however the content of nitrate nitrogen increased significantly, the content of ammonium nitrogen decreased, the content of free amino acids, soluble protein, and the activity of key enzymes of nitrogen metabolism increased to some extent under exogenous EBR treatment, which indicating the exogenous EBR could effectively enhance the nitrogen metabolism capacity. NaCl stress was not conducive to the synthesis and accumulation of alkaloids. The synthesis of precursor substances and the relative expression levels of key enzyme genes in TAs pathway significantly were reduced under NaCl stress. The contents of ornithine, arginine, polyamine, and the activities of key enzymes in putrescine synthesis were increased with the exogenous EBR of 0.1 mg L-1. Moreover, exogenous EBR could effectively enhance the contents of hyoscyamine and scopolamine by increasing the relative expression levels of key enzyme genes TR I and H6H in TAs pathway. In conclusion, the appropriate concentration of exogenous EBR could effectively relieve the damage of NaCl stress to the physiological metabolism in A. belladonna, and the exogenous EBR could improve NaCl tolerance of belladonna seedlings by increasing nitrogen metabolism and promoting the production and accumulation of TAs.

Key words: Atropa belladonna L., NaCl stress, nitrogen metabolism, secondary metabolism

Table 1

Different treatments of Atropa belladonna L."

处理组
Group
NaCl盐浓度
NaCl concentration (mmol L-1)
EBR浓度
EBR concentration
(mg L-1)
CK 0 0
T0 100 0
B1 100 0.05
B2 100 0.1
B3 100 0.2
B4 100 0.4

Table 2

Primers for qRT-PCR"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
F-qPGK TCGCTCTTGGAGAAGGTTGAC
R-qPGK CTTGTCCGCAATCACTACATCAG
F-AbTR Ⅰ TTCTTTGCTTCCCTGCTGCTTC
R-AbTR Ⅰ CAGGCCAACCTTAGTATCACACAG
F-AbH6H TTCCACTTGAGCAGAAAGCAAAGC
R-AbH6H CCTCATGGTCAACTTCCTCACTTCC
F-AbPMT CCTACTTACCCTACTGGTGTTATC
R-AbPMT GCGAAAGATGGCAAAATAAAAGC
F-AbPPAR GATTGGAGTTGTTGGATTGG
R-AbPPAR CCTTGAAGTGTAAGAGATGGA

Fig. 1

Growth of Atropa belladonna with 0.1 mg L-1 EBR treatment after 20 days of NaCl stress treatment Treatments are the same as those given in Table 1. Bar: 10 cm."

Table 3

Effects of exogenous EBR on nitrogen compounds content of leaves under NaCl stress in Atropa belladonna L."

指标
Indicator
处理组
Group
处理时间Treatment days
5 d 10 d 15 d 20 d
硝态氮
Nitrate nitrogen
(μg g-1 FW)
CK 235.270±19.155 a 219.531±17.631 a 228.121±17.588 a 223.681±10.459 a
T0 172.379±10.148 c 165.078±13.045 d 144.347±15.771 d 126.918±15.774 d
B1 196.475±15.896 bc 184.987±15.751 cd 171.979±18.628 cd 155.752±12.174 c
B2 221.515±18.481 ab 212.715±25.806 ab 192.219±10.863 bc 192.379±16.613 b
B3 238.206±17.135 a 206.361±16.391 ab 209.203±15.735 ab 180.566±18.503 bc
B4 209.142±23.651 ab 193.902±15.395 bc 184.267±11.701 bc 177.438±15.189 bc
铵态氮
Ammonium nitrogen
(μg g-1 FW)
CK 86.897±4.105 a 76.944±2.499 c 67.929±2.828 d 71.087±4.672 d
T0 72.957±2.013 c 91.748±1.776 a 106.025±1.289 a 124.603±5.316 a
B1 81.997±1.921 ab 83.524±3.315 b 90.275±1.066 b 113.194±1.749 ab
B2 78.304±3.566 bc 74.326±2.223 cd 71.299±3.039 d 82.622±7.815 cd
B3 73.251±0.933 c 69.352±5.986 d 81.022±3.893 c 93.441±3.973 bc
B4 77.815±2.184 bc 79.089±3.618 bc 86.931±5.621 bc 98.837±5.552 bc
游离氨基酸
Free amino acids
(μg g-1 FW)
CK 821.721±30.434 a 784.398±26.959 a 797.848±43.402 a 758.979±36.011 a
T0 691.934±11.070 c 651.923±5.596 d 606.195±35.981 d 586.021±28.179 c
B1 740.688±15.033 bc 685.546±18.517 cd 647.551±15.952 cd 663.018±11.939 b
B2 782.717±20.377 ab 716.479±14.387 bc 732.619±16.309 ab 708.746±20.148 ab
B3 754.810±13.649 b 741.024±11.110 ab 744.723±17.181 ab 680.879±17.181 b
B4 728.920±8.578 bc 704.375±12.221 bc 692.271±6.623 bc 654.612±9.047 bc
可溶性蛋白
Soluble proteins
(mg g-1 FW)
CK 2.926±0.072 c 2.721±0.085 bc 2.625±0.121 a 2.501±0.058 a
T0 2.839±0.241 bc 2.542±0.109 c 1.816±0.094 c 1.667±0.050 d
B1 3.021±0.094 ab 2.741±0.095 bc 1.979±0.129 bc 1.927±0.104 cd
B2 3.361±0.110 a 3.002±0.051 ab 2.374±0.234 ab 2.308±0.144 ab
B3 3.122±0.071 ab 3.106±0.118 a 2.557±0.146 a 2.149±0.119 bc
B4 2.895±0.104 bc 3.038±0.142 ab 2.056±0.122 bc 2.095±0.126 bc

Table 4

Effects of exogenous EBR on NR, GS, and GDH activity of leaves under NaCl stress in Atropa belladonna L."

指标
Indicator
处理组
Group
处理时间Treatment days
5 d 10 d 15 d 20 d
硝酸还原酶
NR
(U g-1 FW h-1)
CK 1.445±0.028 ab 1.396±0.065 ab 1.462±0.027 a 1.429±0.037 a
T0 1.233±0.063 d 1.065±0.074 d 0.932±0.104 d 0.798±0.076 d
B1 1.392±0.041 cd 1.174±0.045 cd 0.974±0.070 cd 0.874±0.053 d
B2 1.394±0.017 bc 1.455±0.073 a 1.251±0.926 b 1.185±0.063 b
B3 1.566±0.043 a 1.396±0.026 ab 1.149±0.060 bc 1.049±0.052 bc
B4 1.511±0.055 ab 1.257±0.028 bc 1.106±0.026 cd 0.939±0.074 cd
谷氨酰胺合成酶
GS
(OD540 mg-1 protein FW h-1)
CK 3.676±0.126 a 3.482±0.172 a 3.304±0.168 a 3.392±0.067 a
T0 2.992±0.154 c 2.733±0.164 c 2.467±0.143 d 2.303±0.133 d
B1 3.148±0.048 bc 2.867±0.102 bc 2.698±0.081 cd 2.465±0.085 cd
B2 3.570±0.140 a 3.187±0.173 ab 3.225±0.102 ab 3.044±0.036 b
B3 3.512±0.067 ab 3.437±0.042 a 3.025±0.108 bc 2.698±0.124 c
B4 3.429±0.102 ab 3.258±0.080 ab 2.889±0.098 bc 2.527±0.113 cd
谷氨酸脱氢酶
GDH
(U mg-1 FW min-1)
CK 0.252±0.026 c 0.271±0.016 bc 0.772±0.016 b 0.283±0.033 ab
T0 0.293±0.019 bc 0.202±0.008 d 0.154±0.025 d 0.184±0.027 c
B1 0.271±0.024 bc 0.241±0.027 cd 0.198±0.017 cd 0.230±0.019 bc
B2 0.356±0.025 a 0.305±0.022 ab 0.283±0.026 b 0.305±0.024 ab
B3 0.315±0.022 ab 0.346±0.026 a 0.359±0.034 a 0.362±0.016 a
B4 0.236±0.163 c 0.242±0.031 cd 0.258±0.037 bc 0.248±0.025 bc

Fig. 2

Effects of exogenous EBR on hyoscyamine (A) and scopolamine (B) content of leaves under NaCl stress in Atropa belladonna L. Different lowercase letters represent significantly different at the 0.05 probability level among the treatments. Treatments are the same as those given in Table 1."

Fig. 3

Effects of exogenous EBR with different concentrations on ornithine and arginine content of leaves after 20 days of NaCl stress treatment in Atropa belladonna L. Different lowercase letters represent significantly different at the 0.05 probability level among treatments. Treatments are the same as those given in Table 1."

Fig. 4

Effects of exogenous EBR with different concentrations on polyamine content (A), PAs content (B) content of Atropa belladonna L. leaves after 20 days of NaCl stress treatment Different lowercase letters represent significantly different at the 0.05 probability level among treatments. Treatments are the same as those given in Table 1."

Fig. 5

Effects of exogenous EBR with different concentrations on key enzyme activity for polyamine synthesis of Atropa belladonna L. leaves after 20 days of NaCl stress treatment Different lowercase letters represent significantly different at the 0.05 probability level among treatments. Treatments are the same as those given in Table 1."

Fig. 6

Effects of exogenous EBR on relative gene expression level of TR I (A), PMT (B), H6H (C), and PPAR (D) in roots and leaves of Atropa belladonna L. under NaCl stress Different lowercase letters represent significantly different at the 0.05 probability level among treatments. Treatments are the same as those given in Table 1."

Fig. 7

Nitrogen metabolism and TAs metabolic pathway network changes of Atropa belladonna after 0.1 mg L-1 EBR treatment under NaCl stress at 20 days Red represents a significant increase; green represents a significant decrease; white represents no obvious change; FAA: free amino acids; SP: soluble protein; Orn: ornithine; Arg: arginine; Hyo: hyoscyamine; Sco: scopolamine."

[1] 朱虹, 祖元刚, 王文杰, 闫永庆. 盐碱地的植被恢复与盐碱地改良方法的评述. 吉林林业科技, 2007, 36(5):14-27.
Zhu H, Zu Y G, Wang W J, Yan Y Q. Assessment of vegetation restoring and artificial interference in the saline-alkaline soil. Jilin For Sci Technol, 2007, 36(5):14-27 (in Chinese with English abstract).
[2] 李建国, 濮励杰, 朱明, 张润森. 土壤盐渍化现状及未来研究热点. 地理学报, 2012, 67:1233-1245.
Li J G, Pu L J, Zhu M, Zhang R S. The present situation and hot issues in the salt-affected soil research. Acta Geogr Sin, 2012, 67:1233-1245 (in Chinese with English abstract).
[3] 杨伟, 王坚强, 刘勇, 白鸿雁, 武擘, 赫艳芳, 施宝安. 植物盐胁迫研究进展. 园艺与种苗, 2018, 38(5):55-57.
Yang W, Wang J Q, Liu Y, Bai H Y, Wu Q, He Y F, Shi B A. Research progress of plant salt stress. Hortic Seed, 2018, 38(5):55-57 (in Chinese with English abstract).
[4] 吴雪霞. 外源一氧化氮对盐胁迫下番茄幼苗生理特性影响的研究. 南京农业大学博士学位论文, 江苏南京, 2007.
Wu X X. Studies on Influences of Exogenous Nitric Oxide on Physiological Characteristics in Tomato Seedlings under Salt Stress. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2007 (in Chinese with English abstract).
[5] 任文奇. 外源γ-氨基丁酸对Ca(NO3)2胁迫下甜瓜幼苗氮代谢和光合作用的调控. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Ren W Q. Effect of Exogenous Gamma-aminobutyric Acid on Nitrogen Metabolism and Photosynthesis of Melon Seedlings under Ca(NO3)2 Stress. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[6] 万春阳, 王丹, 侯俊玲, 王文全, 李卫东. 氯化钠胁迫对甘草生长、生理及有效成分含量的影响. 中国实验方剂学杂志, 2011, 17(18):118-122.
Wan C Y, Wang D, Hou J L, Wang W Q, Li W D. Effects of NaCl stress on growth, physiological index and content of effective composition of Gllycyrrhiza uralensis. Chin J Exp Trad Med Form, 2011, 17(18):118-122 (in Chinese with English abstract).
[7] 王凤茹, 王志勇. 油菜素内酯信号转导的研究进展. 华北农学报, 2008, 23(增刊2):29-39.
Wang F R, Wang Z Y. The research of brassinosteroids signal transduction. Acta Agric Boreali-Sin, 2008, 23(S2):29-39 (in Chinese with English abstract).
[8] 张华, 向阳海, 杨永华. 油菜素内酯促进滇紫草细胞产生紫草色素初探. 南京大学学报(自然科学版), 1999, 35(2):28-32.
Zhang H, Xiang H Y, Yang Y H. Preliminary study on Onosma paniculatum cell producting shikonin derivatives promoted by brassinolide. J Nanjing Univ (Nat Sci), 1999, 35(2):28-32 (in Chinese).
[9] 池剑亭, 申亚琳, 舒位恒, 王红. 油菜素内酯促进药用植物青蒿中青蒿素的生物合成. 中国科学院大学学报, 2015, 32:476-481.
Chi J T, Shen Y L, Shu W H, Wang H. Artemisinin biosynthesis of Artemisia annua L. promoted by brassinosteroid. J Univ Chin Acad Sci, 2015, 32:476-481 (in Chinese with English abstract).
[10] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 123-194.
Li H S. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Publishers, 2000. pp 123-194(in Chinese).
[11] 汤绍虎, 罗充. 植物生理学实验教程. 重庆: 西南师范大学出版社, 2012. pp 57-58.
Tang S H, Luo C. Plant Physiology Experiment Course. Chongqing: Southwest Normal University Publishers, 2012. pp 57-58(in Chinese).
[12] Zárate R, Hermosin B, Cantos M, Troncoso A. Tropane alkaloid distribution in Atropa baetica plants. J Chem Ecol, 1997, 23:2059-2066.
doi: 10.1023/B:JOEC.0000006489.76006.cb
[13] 黄爱清, 苏国成, 王璋. L-鸟氨酸快速定量检测方法. 食品与发酵工业, 2005, (12):98-102.
Huang A Q, Su G C, Wang Z. Rapid quantitative determination for L-ornithine analysis. Food Ferm Ind, 2005, (12):98-102 (in Chinese with English abstract).
[14] 胡桂娟, 刘寄明, 刘嘉芬. 化学法测定精氨酸总量. 落叶果树, 1995, (1):22.
Hu G J, Liu J M, Liu J F. Chemical determination of total arginine. Deciduous Fruits, 1995, (1):22 (in Chinese).
[15] 赵福庚, 刘友良. 精氨酸脱羧酶和谷酰胺转移酶活性的测定方法. 植物生理学通讯, 2000, 36:442-445.
Zhao F G, Liu Y L. Methods of measuring arginine decarboxylase and transglutaminase activity. Plant Physiol J, 2000, 36:442-445 (in Chinese with English abstract).
[16] 康朵兰. 马铃薯大西洋块茎在休眠萌发和低温贮藏期的生理生化变化. 湖南农业大学硕士学位论文, 湖南长沙, 2007.
Kang D L. Physiological and Biochemical Changes of Potato Atlantic Tuber during Dormancy, Sprouting and Cold Storage. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2007 (in Chinese with English abstract).
[17] 强玮. 颠茄TR I基因的克隆、功能验证及超量表达对颠茄托品烷生物碱合成的影响. 西南大学硕士学位论文, 重庆, 2012.
Qiang W. Cloning and Characterization of Tropinone Reductase I from Atropa belladonna and Its Overexpression for Enhancing the Tropane Alkaloids Production in Atropa belladonna. MS Thesis of Southwest University, Chongqing, China, 2012 (in Chinese with English abstract).
[18] 强玮, 王亚雄, 张巧卓, 李金弟, 夏科, 吴能表, 廖志华. 颠茄托品烷生物碱合成途径基因表达分析与生物碱积累研究. 中国中药杂志, 2014, 39(1):52-58.
Qiang W, Wang Y X, Zhang Q Z, Li J D, Xia K, Wu N B, Liao Z H. Expression pattern of genes involved in tropane alkaloids biosynthesis and tropane alkaloids accumulation in Atropa belladonna. China J Chin Mat Med, 2014, 39(1):52-58 (in Chinese with English abstract).
[19] Qiu F, Yang C X, Yuan L, Xiang D, Lan X Z, Chen M, Liao Z H. A phenylpyruvic acid reductase is required for biosynthesis of tropane alkaloids. Org Lett, 2018, 20:7807-7810.
doi: 10.1021/acs.orglett.8b03236
[20] 李金弟. 颠茄qPCR内参基因筛选及TR II基因表达分析. 西南大学硕士学位论文, 重庆, 2013.
Li J D. Reference Genes Slection for qPCR in Atropa belladonna and the Expression Analysis of Tropinone Reductase II. MS Thesis of Southwest University, Chongqing, China, 2013 (in Chinese with English abstract).
[21] 刘丽, 甘志军, 王宪泽. 植物氮代谢硝酸还原酶水平调控机制的研究进展. 西北植物学报, 2004, 24:1355-1361.
Liu L, Gan Z J, Wang X Z. Advances of studies on the regulation of nitrate metabolism of plants at nitrate reductase level. Acta Bot Boreali-Occident Sin, 2004, 24:1355-1361 (in Chinese with English abstract).
[22] 郭紫娟, 孙风国, 张慎好. 多胺对果树生长发育的影响研究进展. 河北农业科学, 2005, 9(3):99-102.
Guo Z J, Sun F G, Zhang S H. The studies of polyamines in fruits. J Hebei Agric Sci, 2005, 9(3):99-102 (in Chinese with English abstract).
[23] Yuan L Y, Yuan Y H, Du J, Sun J, Guo S. Effects of 24-epibrassinolide on nitrogen metabolism in cucumber seedlings under Ca(NO3)2 stress. Plant Physiol Biochem, 2012, 61:29-35.
doi: 10.1016/j.plaphy.2012.09.004
[24] 马月花, 郭世荣, 杜南山, 山溪, 孙锦, 王磊, 王颖, 束胜. 外源2,4-表油菜素内酯对低氧胁迫下黄瓜幼苗氮代谢的影响. 南京农业大学学报, 2015, 38:538-545.
Ma Y H, Guo S R, Du N S, Shan X, Sun J, Wang L, Wang Y, Shu S. Effect of exogenous 2,4-epibrassinolide on nitrogen assimilation of cucumber seedlings under hypoxia stress. J Nanjing Agric Univ, 2015, 38:538-545 (in Chinese with English abstract).
[25] 寇江涛. 2,4-表油菜素内酯诱导下紫花苜蓿耐盐性生理响应研究. 甘肃农业大学硕士学位论文, 甘肃兰州, 2016.
Kou J T. Physiological Mechanism of 2,4-epibrassinolide-Regulated Salt Stress Tolerance in Medicago sativa. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2016 (in Chinese with English abstract).
[26] 张扬欢. 增强UV-B辐射及干旱复合处理对长春花(Catharanthus roseus)碳氮代谢及生物碱含量的调控. 西南大学硕士学位论文, 重庆, 2011.
Zhang Y H. Studies on the Regulation of Enhanced UV-B Radiation and Drought Stress on Carbon and Nitrogen Metabolism and Alkaloid Content in Catharanthus roseus. MS Thesis of Southwest University, Chongqing, China, 2011 (in Chinese with English abstract).
[27] Patterson S, O’Hagan D. Biosynthetic studies on the tropane alkaloid hyoscyamine in Datura stramonium; hyoscyamine is stable to in vivo oxidation and is not derived from littorine via a vicinal interchange process. Phytochemistry, 2002, 61:323-329.
pmid: 12359518
[28] 李霞, 程运河, 马晓东, 韩蕾, 孙振元. 多胺在植物抗逆中的生理机制. 世界林业研究, 2018, 31(4):23-28.
Li X, Cheng Y H, Ma X D, Han L, Sun Z Y. Physiological mechanism of polyamines in plant resistance. World For Res, 2018, 31(4):23-28 (in Chinese with English abstract).
[29] Zhao T, Li S, Wang J, Zhou Q, Yang C, Bai F, Lan X, Chen M, Liao Z. Engineering tropane alkaloid production based on metabolic characterization of ornithine decarboxylase in Atropa belladonna. ACS Synth Biol, 2020, 9:437-448.
doi: 10.1021/acssynbio.9b00461
[30] 陆芳勤, 王欣, 沈潼, 周峰. 多胺代谢与植物环境胁迫. 天津农业科学, 2014, 20(3):15-17.
Lu F Q, Wang X, Shen T, Zhou F. Relationship between polyamine metabolism and environmental stress. Tianjin Agric Sci, 2014, 20(3):15-17 (in Chinese with English abstract).
[31] 乔晶, 胡峻, 李妍芃, 任广喜, 项妤, 臧艺玫, 刘勇, 刘春生. 油菜素内酯对甘草性状及7种化学成分含量的影响. 中国中药杂志, 2016, 41(2):197-204.
Qiao J, Hu J, Li Y F, Ren G X, Xiang S, Zang Y M, Liu Y, Liu C S. Effect of exogenous Brassinolide on morphological characters and contents of seven chemical constituents of Glycyrrhiza uralensis. China J Chin Mat Med, 2016, 41(2):197-204 (in Chinese with English abstract).
[32] 杨怡. 外源NO对盐胁迫下颠茄生理特性及次生代谢调控的影响. 西南大学硕士学位论文, 重庆, 2019.
Yang Y. The Effect of Exogenous Nitric on Physiological Characteristics and Secondary Metabolites Accumulation of Atropa belladonna L. Seedling under NaCl Stress. MS Thesis of Southwest University, Chongqing, China, 2019 (in Chinese with English abstract).
[33] 王东辉. 环境要素对玄参次生代谢的影响. 中国科学院水土保持与生态环境研究所博士学位论文, 陕西西安, 2010.
Wang D H. The Effects of Environmental Factors on Secondary Metabolism of Scrophularia ningpoensis. PhD Dissertation of Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Xi’an, Shaanxi, China, 2010 (in Chinese with English abstract).
[1] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[2] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[3] LYU Teng-Fei, SHEN Jie, DAI Zou, MA Peng, YANG Zhi-Yuan, ZHENG Chuan-Gang, MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1966-1977.
[4] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[5] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[6] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
[7] Yu-Si SHAN, Zheng-Qi XIN, Xiao HE, Huan-Huan DAI, Neng-Biao WU. Mechanism exploration on alkaloids accumulation and TAs metabolic pathways regulation in Atropa belladonna L. treated with exogenous methyl jasmonate under UV-B stress [J]. Acta Agronomica Sinica, 2020, 46(12): 1894-1904.
[8] Ke DANG,Xiang-Wei GONG,Guang-Hua CHEN,Guan ZHAO,Long LIU,Hong-Lu WANG,Pu YANG,Bai-Li FENG. Nitrogen accumulation, metabolism, and yield of proso millet in proso millet- mung bean intercropping systems [J]. Acta Agronomica Sinica, 2019, 45(12): 1880-1890.
[9] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[10] Ke-Huan LU,Xing LIU,Yi YANG,Zhi-Hua LIAO,Neng-Biao WU. Effect of Exogenous Ca 2+ on Physiological Characteristics and Secondary Metabolites accumulation of Atropa belladonna L. Seedlings under UV-B Stress [J]. Acta Agronomica Sinica, 2018, 44(10): 1527-1538.
[11] LI Yuan, LI Ya-Bing, HU Da-Peng, WANG Jun, HENG Li, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of Waterlogging on Bt Protein Content and Nitrogen Metabolism in Square of Bt Cotton [J]. Acta Agron Sin, 2017, 43(11): 1658-1666.
[12] PENG Zhen,HE Shou-Pu,GONG Wen-Fang,PAN Zhao-E,JIA Yin-Hua,LU Yan-Li,DU Xiong-Ming. Transcriptome Analysis of Transcription Factors Expression PatterninUpland Cotton Seedlings under NaCl Stress [J]. Acta Agron Sin, 2017, 43(03): 354-370.
[13] HENG Li,HU Da-Peng,WANG Gui-Xia,LYU Chun-Hua,ZHANG Xiang,CHEN Yuan,CHEN De-Hua. Effect of High Temperature Stress on Bt Insecticidal Protein Content and Nitrogen Metabolism of Square in Bt Cotton [J]. Acta Agron Sin, 2016, 42(09): 1374-1380.
[14] ZHOU Wei-Xia,DONG Peng-Fei,WANG Xiu-Ping,LI CHAO-Hai. Effects of Low-light Stress on Kernel Setting, and Carbon and Nitrogen Metabolism of Different Maize (Zea mays L.) Genotypes [J]. Acta Agron Sin, 2013, 39(10): 1826-1834.
[15] ZHAO Feng, ZHANG Wei-Jian, ZHANG Xiu-Fu, WANG Dan-Yang, XU Chun-Mei. Effect of Continuous Aeration on Growth and Activity of Enzymes Related to Nitrogen Metabolism of Different Rice Genotypes at Tillering Stage [J]. Acta Agron Sin, 2012, 38(02): 344-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!