Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 789-798.doi: 10.3724/SP.J.1006.2021.04169

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance

LI Jie-Hua1,3(), DUAN Qun1,3(), SHI Ming-Tao1,3(), WU Lu-Mei1,3, LIU Han2, LIN Yong-Jun1, WU Gao-Bing3, FAN Chu-Chuan1,3,*(), ZHOU Yong-Ming1,3,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    3College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-07-25 Accepted:2020-11-01 Online:2021-05-12 Published:2020-12-14
  • Contact: FAN Chu-Chuan,ZHOU Yong-Ming E-mail:1023629768@qq.com;554246233@qq.com;843121993@qq.com;fanchuchuan@mail.hzau.edu.cn;ymzhou@mail.hzau.edu.cn
  • Supported by:
    National Major Project for Developing New GM Crops(2018ZX08020001)

Abstract:

Glyphosate is the most widely used broad-spectrum herbicide in the world. However, at present there is no glyphosate-tolerant rapeseed variety with independent intellectual property rights in China. In the study, a novel glyphosate-resistant genes I. variabilis EPSPS was transferred to the Brassica napus pure line J9707 via the Agrobacterium tumefaciens-mediated hypocotyl method, and 126 T0-positive transgenic plants with 97.0% positive rate were generated. The T-DNA insertion with a single copy (44.8%) is dominant. The insertion locations of T-DNA in the lines of EPS-2, EPS-6, and EPS-7 were identified by inverse PCR method. The stability of the T-DNA insertion in these lines were further confirmed by insertion-specific PCR in their T0 to T3 plants. The gene expression analysis revealed that the I. variabilis EPSPS gene and its protein was stably expressed in different generations of transgenic lines in RNA and protein levels. Treatments with different doses of glyphosate indicated that the lines of EPS-1, EPS-2, EPS-5, EPS-6, and EPS-7 could tolerate four times of the recommended dose of glyphosate in production. Thus, the novel glyphosate-tolerant rapeseed lines generated in the present study will lay the foundation for the herbicide- tolerance rapeseed breeding in China.

Key words: Brassica napus, I. variabilis EPSPS, transgene, glyphosate, molecular characteristics

Fig. 1

T-DNA region of the binary construct pTGH-1"

Table 1

Primer sequences used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
EPSPS-F ATTAGCGCTAGGGACGTGAG P1 CTCTAGCCAATACGCAAACCGCC
EPSPS-R ATACGCTCCCACATCCTGTC P3 TGTTGTGTGGAATTGTGAGCGGA
35SP-1 GAAACCGGTTACAGGCAAATG SP2 CAGGTGGAGAACGTCGGTACGACT
35SP-2 AGAGGCGGTTTGCGTATT SP3 GGGTTTCGCTCATGTGTTGAGCA
35ST-1 ATAACACATTGCGGACGTTT BnACT-qRTF CTGGAATTGCTGACCGTATGAG
35ST-2 AGCCGGTGCTTGATAACT BnACT-qRTR ATCTGTTGGAAAGTGCTGAGGG
35SP-2 AGAGGCGGTTTGCGTATT EPs-qRTF CAGGGATGGACTCGTTATCAC
p130-35sF CAAGTGGATTGATGTGATAACATG EPs-qRTR GAGGGTCTTCGCAGTCGT
p130-35sR GTAGAGAGAGACTGGTGATTTCAGC EPSPS6 F GGCTTCTTAGTGGGCCTTTC
Iva-EPSPS-F ATTAGCGCTAGGGACGTGAG EPSPS7 F CATCCGCTTTACGACGAAACT
Iva-EPSPS-R ATACGCTCCCACATCCTGTC EPSPS2 F GAACTGAGCATGAATGGCATAAA
P5 ATGTGTGAGTAGTTCCCAGATAAGG

Fig. 2

PCR identification of positive transgenic plants of the I. variabilis EPSPS gene A: PCR identification of the target gene I. variabilis EPSPS by primer pair EPSPS-F/EPSPS-R; B: PCR identification of the CaMV 35S promoter by primer pair 35SP-1/35SP-2; C: PCR identification of the CaMV 35S terminator by primer pair 35ST-1/35ST-2. M: 2 kb DNA marker; P: the positive control of pTGH-1plasmid; N: the negative control of J9707; 1-12: the T0 transgenic plants from EPS-1 to EPS-12."

Fig. 3

Determination of the I. variabilis EPSPS transgenic copy number by Southern blotting analysis in the T0-positive transgenic plants A: detection of Southern blot analysis. The hybrid probe is on the I. variabilis EPSPS gene; the genomic DNA was digested with Hind Ш before electrophoresis. M: DNA marker; 1-31: the positive transgenic plants; 1: EPS-1; 3: EPS-2; 12: EPS-7; 29: EPS-3; 31: EPS-6; N: J9707 (negative control). B: summary of the copy number of transgenic plants."

Fig. 4

Determination of the I. variabilis EPSPS transgenic copy number by Southern blotting analysis in the T2 and T3 positive transgenic plants A: detection of Southern blot with the hybrid probe of CaMV35S promoter and EcoR I restriction enzyme; B: detection of Southern blot with the hybrid probe of CaMV35S promoter and Hind Ш restriction enzyme; C: detection of Southern blot with the hybrid probe of EPSPS gene and EcoR I restriction enzyme; D: detection of Southern blot with the hybrid probe of EPSPS gene and Hind Ш restriction enzyme. M: DNA marker; P: pTGH-1 plasmid (positive control); N: J9707 (negative control); 1-9: the positive transgenic plants, which are a T2 plant of EPS-1, a T2 plant of EPS-2, a T2 plant of EPS-3, a T2 plant of EPS-4, a T2 plant of EPS-5, a T2 plant of EPS-6, a T3 plant of EPS-6, a T2 plant of EPS-7, and a T3 plant of EPS-7, respectively."

Table 2

Glyphosate-resistant segregation analysis of transgenic lines with single T-DNA insertion"

株系编号
Line ID
总株数
Total plant number
存活株数
Number of survived plants
死亡株数
Number of dead plants
期望分离比
Expected segregated ratio
χ20.05, 1
EPS-1 50 33 17 3:1 1.71
EPS-2 50 31 19 3:1 3.84
EPS-4 56 39 17 3:1 0.59
EPS-5 49 34 15 3:1 0.55

Fig. 5

Insertion location information of T-DNA of EPS-2, EPS-6, and EPS-7 in the transgenic lines"

Fig. 6

PCR confirmation of the T-DNA insertion in the transgenic lines of EPS-2, EPS-6, and EPS-7 with specific primers A: PCR confirmation of the T-DNA insertion in the transgenic line of EPS-2 with specific primer pair EPSPS2 F/P5. B: PCR confirmation of the T-DNA insertion in the transgenic line of EPSPS6 with specific primer pair EPSPS6 F/P5. C: PCR confirmation of the T-DNA insertion in the transgenic line of EPS-7 with specific primer pair EPSPS7 F/P5. M: 2 kb DNA marker; P: pTGH-1 plasmid (positive control); N: J9707 (negative control); 1: T0-transgenic plant; 2-4: T1-transgenic plant; 5-7: T2-transgenic plant; 8-10: T3-transgenic plant."

Fig. 7

Expression analysis of the transgenic lines of I. variabilis EPSPS A: the RNA expression levels of the target gene in the leaf of T0-positive transgenic lines detected by RT-PCR. M: 3 kb DNA marker; 1-5: the positive transgenic lines of EPS-1, EPS-6, EPS-7, EPS-2, and EPS-5, respectively; N: J9707 (negative control); P: pTGH-1 (positive control). B: the protein expression level of the target gene in the leaves of the T0-positive transgenic lines detected by Western blot. N: J9707 (negative control); 1-6: the positive transgenic lines of EPS-1, EPS-6, EPS-36, EPS-7, EPS-2, and EPS-5, respectively. C: the relative expression of the target gene in different tissues of the T3-positive transgenic lines detected by qRT-PCR. Actin2 (AF111812) in rape is an internal reference gene."

Fig. 8

Phenotypes of T1 transgenic plants of I. variabilis EPSPS under the treatments of glyphosate"

Fig. 9

Phenotypes of T3 transgenic plants of I. variabilis EPSPS under the treatments with different concentrations of glyphosate at seedling stage"

[1] 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z. Historical review and prospect of rapeseed industry development in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[2] 官春云. 优质油菜生理生态和现代栽培技术. 北京: 中国农业出版社, 2013. pp 192-219.
Guan C Y. Physiological Ecology and Modern Cultivation Techniques of High-Quality Rapeseed. Beijing: China Agriculture Press, 2013. pp 192-219(in Chinese).
[3] Dill G M. Glyphosate-resistant crops: history, status and future. Pest Manage Sci, 2010,61:219-224.
[4] 赵平. 2015年全球农药市场概况及发展趋势. 农药, 2017,56(2):79-85.
Zhao P. Overview and development trend of global pesticide market in 2015. Pesticide, 2017,56(2):79-85 (in Chinese with English abstract).
[5] Li H T, Li J J, Zhao B, Wang J, Yi L C, Liu C, Wu J S, King G J, Liu K D. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed ( Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor Appl Genet, 2015,128:107-118.
[6] 魏松红, 纪明山, 张希科, 孙桂玲. 应用诱变法筛选抗草甘膦水稻植株. 农药, 2006,45(11):43-44.
Wei S H, Ji M S, Zhang X K, Sun G L. Selection of glyphosate-resistant rice with mutation. Pesticide, 2006,45(11):43-44 (in Chinese with English abstract).
[7] 张俐俐, 谷维, 雷勃钧, 吕晓波, 李铁. 应用化学诱变法筛选抗草甘膦大豆突变株系. 大豆科学, 2009,28:938-940.
Zhang L L, Gu W, Lei B J, Lyu X B, Li T. Glyphosate resistant mutant strain of soybean filtered by chemomorphosis. Soybean Sci, 2009,28:938-940 (in Chinese with English abstract).
[8] Padgette S R, Kolacz K H, Delannay X, Re D B, LaVallee B J, Tinius C N, Rhodes W K, Otero Y I, Barry G F, Eichholtz D A. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci, 1995,35:1451-1461.
[9] Kahrizi D, Salmanian A H, Afshari A, Moieni A, Mousavi A. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep, 2007,26:95-104.
[10] Main C L, Jones M A, Murdock E C. Weed response and tolerance of enhanced glyphosate-resistant cotton to glyphosate. J Cotton Sci, 2007,11:104-109.
[11] Green J M, Hale T, Pagano M A, Andreassi J L, Gutteridge S A. Response of 98140 corn with gat4621 and hra transgenes to glyphosate and ALS-inhibiting herbicides. Weed Sci, 2009,57:142-148.
[12] Comai L, Facciotti D, Hiatt W R, Thompson G, Rose R E, Stalker D M. Expression in plants of a mount aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature, 1985,317:741-744.
[13] Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Fincher K, Hallas L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr Top Plant Physiol, 1992,7:139-145.
[14] 陈家华, 潘良文, 沈禹飞, 胡永强, 陶军. 转基因抗草甘膦油菜籽中草甘膦氧化还原酶基因的检测方法研究. 中国油料作物学报, 2001,23:63-67.
Chen J H, Pan L W, Shen Y F, Hu Y Q, Tao J. Detection of glyphosate oxidoreductase gene in transgenic rapeseed resistant to glyphosate. Chin J Oil Crop Sci, 2001,23:63-67 (in Chinese with English abstract).
[15] Yang X, Li L, Jiang X Q, Wang W, Cai X X, Su J, Wang F, Lu B R. Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) transgene alters phenology and fitness of crop-wild hybrid offspring. Sci Rep, 2017,7:6834.
[16] Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2:139.
[17] Aaron W H, Raj D C, Tomas C, Andrew M M, Anupama V, Adam B, Colby G S, Rebecca B, Daniel F V, Nigel J T. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J, 2018,16:1275-1282.
[18] Cui Y, Huang S Q, Liu Z D, Yi S Y, Zhou F, Chen H, Lin Y J. Development of novel glyphosate-tolerant japonica rice lines: a step toward commercial release. Front Plant Sci, 2016,7:1218.
[19] 刘子铎, 易沭远, 林拥军, 张利莉, 吴高兵. 一种分离的5-烯醇丙酮莽草酸-3-磷酸合酶基因. CN103834674, 2016-2-23.
Liu Z Y, Yi M Y, Lin Y J, Zhang L L, Wu G B. A isolated 5- enolpyruvyl-shikimate-3-phosphate synthase gene. CN103834674, 2016-2-23 (in Chinese).
[20] Yi S Y, Wu G B, Lin Y J, Hu N, Liu Z D. Characterization of a new type of glyphosate-tolerant 5-enolpyruvyl shikimate-3- phosphate synthase from Isoptericola variabilis. J Mol Catal B Enzym, 2015,111:1-8.
[21] Zhou Y, Wang H, Gilmer S, Whitwill S, Keller W, Fowke L C. Control of petal and pollen development by the plant cyclin- dependent kinase inhibitor ICK1 in transgenic Brassica plants. Planta, 2002,215:248-257.
[22] 李杰华. 抗广谱性除草剂转基因油菜创制及抗性评价. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Li J H. Development and Evaluation of Transgenic Rapeseed with Broad Spectrum Herbicide Resistant Gene. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[23] Fan C C, Wu Y D, Yang Q Y, Yang Y, Meng Q W, Zhang K Q, Li J G, Wang J F, Zhou Y M. A novel single-nucleotide mutation in a CLAVATA3 gene homologue controls a multilocular silique trait in Brassica rapa L. Mol Plant, 2014,7:1788-1792.
[24] Dong Y F, Jin X, Tang Q L, Zhang X, Yang J T, Liu X J, Cai J F, Zhang X B, Wang X J, Wang Z X. Development and event-specific detection of transgenic glyphosate-resistant rice expressing the G2-EPSPS gene. Front Plant Sci, 2017,8:885.
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[6] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[7] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[8] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[9] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[10] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[11] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[12] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
[15] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!