Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1020-1030.doi: 10.3724/SP.J.1006.2021.04042

• SPECIAL SECTION: GENOMICS AND GENETIC IMPROVEMENT IN MAIN BAST FIBER CROPS • Previous Articles     Next Articles

Characterization of the expression profiling of circRNAs in the barks of stems in ramie

LI Fu(), WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming*()   

  1. Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture and Rural Affairs/Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China
  • Received:2020-02-24 Accepted:2020-07-02 Online:2021-06-12 Published:2020-07-16
  • Contact: LIU Tou-Ming E-mail:704510340@qq.com;liutouming@caas.cn
  • Supported by:
    The National Natural Science Foundation of China(31871678);The Agricultural Science and Technology Innovation Program of China(CAAS-ASTIP-IBFC)

Abstract:

Ramie [Boehmeria nivea (L.) Gaud.] is a special natural fiber crops in China, and its fiber has many excellent characteristics, including long strands and well tensile strength. Elucidation of the mechanism for fiber formation will be helpful for the improvement of fiber yield and quality in ramie. In this study, the expressed analysis of circular RNA (circRNA) for the tissues of barks from the top stems and middle stems were performed by Illumina sequencing, respectively. The total of 5268 circRNAs were identified. Among these circRNAs, 78 showed differential expression between two examined tissues. Previous cytological observation suggested that the secondary cellular walls (SCWs) of fiber cells from the top of the ramie stems did not initiate growth and those from middle part of the ramie stems were thickening. Therefore, we speculated that these 78 differentially expressed circRNAs were potentially involved in the fiber development in ramie. The results provide an important basis for understanding the role of circRNA in the regulation of fiber development.

Key words: ramie, fiber development, circRNA, differential expression

Fig. 1

A picture shows the sampling position for circRNA sequencing MPS and TPS represent the barks sample collected from the middle and top stems, respectively. This picture displays that the secondary cellular walls (SCWs) of fiber cells from the top of the ramie stems do not initiate growth and those from middle part of the ramie stems are thickening. This figure is cited from the study of Chen et al.[10] "

Table 1

Primer sequence of differentially expressed circRNAs and the control gene for qRT-PCR in ramie"

circRNA名称
circRNA ID
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
scaffold270:40371|40783 TGGCATGAATCACCGAACCTG TGTCATGACGCGCCCATTCCT
scaffold6:1851520|1851960 ATGAAATCAGGGAATGCCAA CTCCCAAACTTCACCGTC
scaffold360:24869|25462 CTTTCCTTGCTTCGCCAAC TTCCCTGCTACTCTATTGCT
scaffold360:11517|11838 TCCACTAGCGTCATTCGAAG CTAGGTCAGAAAAGCGAGAAC
scaffold36:1536277|1547559 TTGATCTTGGCCATGTCCCGA ACGGTTCAATAAGGCGAGA
scaffold110:48151|61235 AGAATCCACAATACCGTCAGC TTGTGTATTCATTTGGCCCAT
scaffold30:600099|602644 ATAAAGAGTCGTTGGGCCTT TGAACTTCCTTTCCGCCAGA
scaffold11:2168138|2169190 GTCCACAGAGCGATCATATGTC TTTTAGGCACTTACCGGGTT
scaffold360:15097|17687 CGTTTGACTTGATCCCGACAG CAGAGCAAATGAGGGTATAGCAA
scaffold128:291760|298584 ACAAAAAGCAATGGCAATTACGG AACAGACTCACCAATGGCATC
18S ATGATAACTCGACGGATCGC CTTGGATGTGGTAGCCGTTT

Table 2

Data statistics from circRNA sequencing for six samples of stem barks in ramie"

样品
Sample
原始read数
Raw read number (Million)
Clean read数
Clean read number (Million)
总长度
Total length
(Gb)
Q30值
Q30 value
(%)
Clean reads产出率
Yielded ratio of clean reads (%)
MPS1 101.23 74.3 11.1 96.4 73.4
MPS2 106.02 74.5 11.2 96.0 70.3
MPS3 107.77 74.3 11.1 96.7 68.9
TPS1 102.76 74.0 11.1 96.0 72.0
TPS2 119.18 73.7 11.1 96.1 61.9
TPS3 109.41 73.7 11.1 96.4 67.4

Fig. 2

GO functional classification of 4729 transcribed circRNAs genes in ramie"

Fig. 3

Identification of differentially expressed circRNA by comparing gene expression level between TPS and MPS libraries Red dots represent transcripts more prevalent in the MPS library, blue dots show those present at a lower frequency in the MPS, and gray dots indicate transcripts that did not change significantly; X and Y axes represent the logarithm of read number for each circRNA in TPS and MPS libraries, respectively. Abbreviations are the same as those given in Table 2."

Table 3

Detail for differentially expressed circRNA identified between the bast barks of MPS and TPS"

circRNA名称
circRNA ID
类型
Type
MPS read数
MPS-reads number
TPS read数
TPS-reads number
差异倍数
Differential fold (MPS/TPS)
调控方向
Direction regulated
校正P
Adjusted P-value
对应基因
Gene located by circRNA
对应基因功能
Annotationof gene located by circRNA
scaffold13:3497301|3498287 Introgenic 553.7 13.0 42.7 上调 Up-regulated 2.6E-04 whole_GLEAN_10021135 Ent-kaurenoic acid oxidase 1
scaffold7:2328081|2328970 Iintrogenic 760.3 18.1 42.0 上调Up-regulated 2.8E-04 whole_GLEAN_10025341 Casein kinase 1
scaffold27:618745|619712 Introgenic 484.5 12.5 38.9 上调Up-regulated 3.9E-04 whole_GLEAN_10015712 Cleavage and polyadenylation specificity factor subunit 3-I
scaffold24:109942|110887 Introgenic 461.0 12.8 35.9 上调Up-regulated 5.4E-04 whole_GLEAN_10016716 Protein APEM9
scaffold68:19731|20827 Introgenic 433.3 12.1 35.7 上调Up-regulated 5.6E-04 whole_GLEAN_10010106 Protein CHROMATIN REMODELING 5
scaffold777:22008|22923 Introgenic 485.5 14.2 34.2 上调Up-regulated 6.7E-04 whole_GLEAN_10001638 Non-specific phospholipase C3
scaffold1:1651705|1652476 Introgenic 507.7 14.9 34.1 上调Up-regulated 6.7E-04 whole_GLEAN_10029483 Monogalactosyldiacylglycerol synthase
scaffold11:2168138|2169190 Intergenic 401.2 11.8 33.9 上调Up-regulated 6.8E-04
scaffold14:2019005|2020131 Introgenic 568.2 17.5 32.4 上调Up-regulated 8.2E-04 whole_GLEAN_10020529 Peroxisome biogenesis protein 1
scaffold1:2974233|2974487 Introgenic 418.1 13.7 30.6 上调Up-regulated 1.0E-03 whole_GLEAN_10029667 Homeobox protein knotted-1-like 1
scaffold4:2794969|2795547 Introgenic 328.8 10.8 30.5 上调Up-regulated 1.0E-03 whole_GLEAN_10027195 Lissencephaly-1 homolog
scaffold13:1482426|1482614 Introgenic 288.1 10.8 26.7 上调Up-regulated 1.7E-03 whole_GLEAN_10020870 Threonine-protein kinase PBL28
scaffold42:394825|395928 Introgenic 303.4 11.9 25.5 上调Up-regulated 2.0E-03 whole_GLEAN_10012793 U11/U12 small nuclear ribonucleoprotein 65 kDa protein
scaffold110:48151|61235 Introgenic 256.8 10.3 24.9 上调Up-regulated 2.2E-03 whole_GLEAN_10007543 Protein TIC 40
scaffold6:1851520|1851960 Introgenic 400.8 16.3 24.5 上调Up-regulated 2.3E-03 whole_GLEAN_10025870 DEAD-box ATP-dependent RNA helicase 50
scaffold6:319819|320593 Introgenic 239.6 10.5 22.9 上调Up-regulated 2.9E-03 whole_GLEAN_10025672 GBF-interacting protein 1
scaffold22:2080855|2081636 Introgenic 308.2 13.6 22.6 上调Up-regulated 3.1E-03 whole_GLEAN_10017734 SOK1 kinase belonging to the STE20/SPS1/GC kinase family
scaffold38:1007107|1007440 Introgenic 229.5 10.2 22.5 上调Up-regulated 3.1E-03 whole_GLEAN_10013247 Lipoxygenase 6
scaffold4:984097|984791 Introgenic 225.4 10.3 21.8 上调Up-regulated 3.5E-03 whole_GLEAN_10026982 V-type proton ATPase subunit a1
scaffold36:1130226|1130557 Introgenic 332.4 15.3 21.8 上调Up-regulated 3.5E-03 whole_GLEAN_10013939 Primary amine oxidase
scaffold9:3087645|3088126 Introgenic 261.8 12.2 21.5 上调Up-regulated 3.7E-03 whole_GLEAN_10024168 Transcription factor bHLH144
scaffold69:390306|390963 Introgenic 230.6 11.2 20.6 上调Up-regulated 4.2E-03 whole_GLEAN_10010042 Formin-like protein 16
scaffold244:78865|79334 Introgenic 216.4 10.9 19.9 上调Up-regulated 4.7E-03 whole_GLEAN_10004368 Uncharacterized mitochondrial protein ymf40
scaffold11:2226699|2233286 Introgenic 273.2 13.9 19.6 上调Up-regulated 4.9E-03 whole_GLEAN_10021948 Cold-regulated 413 plasma membrane protein 2
scaffold23:488065|489466 Introgenic 198.8 10.2 19.4 上调Up-regulated 5.1E-03 whole_GLEAN_10017916 Phosphoinositide phosphatase SAC1
scaffold59:336176|337027 Introgenic 192.9 10.1 19.1 上调Up-regulated 5.4E-03 whole_GLEAN_10011259 Glycosylphosphatidylinositol anchor synthesis protein
scaffold270:63772|64261 Introgenic 215.3 11.3 19.0 上调Up-regulated 5.5E-03 whole_GLEAN_10004135 ATP synthase protein YMF19
scaffold21:626345|627257 Introgenic 179.7 9.7 18.6 上调Up-regulated 5.9E-03 whole_GLEAN_10019902 Poly [ADP-ribose] polymerase 1
scaffold41:981509|982441 Introgenic 232.5 12.9 18.0 上调Up-regulated 6.5E-03 whole_GLEAN_10013030 WD40 repeat protein
scaffold25:1518597|1519148 Introgenic 183.3 10.3 17.7 上调Up-regulated 6.8E-03 whole_GLEAN_10016591 Protein LSD1
scaffold69:199217|199851 Introgenic 194.3 11.2 17.3 上调Up-regulated 7.4E-03 whole_GLEAN_10010022 U-box domain-containing protein 14
scaffold37:1378235|1379257 Introgenic 163.1 9.5 17.2 上调Up-regulated 7.5E-03 whole_GLEAN_10013509 Uncharacterized protein At1g51745
scaffold41:312471|314479 Introgenic 168.0 10.2 16.5 上调Up-regulated 8.5E-03 whole_GLEAN_10012948 Nucleolar GTPase 2
scaffold30:600099|602644 Introgenic 156.9 9.6 16.3 上调Up-regulated 8.9E-03 whole_GLEAN_10015039 Protein CROWDED NUCLEI 3
scaffold34:2347785|2349055 Introgenic 144.0 9.0 16.0 上调Up-regulated 9.3E-03 whole_GLEAN_10017394 B3 domain-containing protein07g0563300
scaffold360:24869|25462 Introgenic 174.8 11.0 15.9 上调Up-regulated 9.4E-03 whole_GLEAN_10003361 Cytochrome c oxidase subunit 2
scaffold1:5693805|5694897 Introgenic 169.3 10.6 15.9 上调Up-regulated 9.5E-03 whole_GLEAN_10030060 Internal alternative NAD(P)H-ubiquinone oxidoreductase A1
scaffold244:79500|79823 Introgenic 155.0 9.9 15.7 上调Up-regulated 9.8E-03 whole_GLEAN_10004368 Uncharacterized mitochondrial protein ymf40
scaffold270:63801|64263 Introgenic 155.3 10.1 15.4 上调Up-regulated 1.0E-02 whole_GLEAN_10004135 ATP synthase protein YMF19
scaffold112:248381|248869 Introgenic 148.3 9.6 15.4 上调Up-regulated 1.0E-02 whole_GLEAN_10007469 Peptidyl-prolyl cis-trans isomerase CYP71
scaffold36:1536277|1547559 Introgenic 150.7 9.9 15.2 上调Up-regulated 1.1E-02 whole_GLEAN_10013997 Cytochrome P450 71A1
scaffold360:12593|13058 Intergenic 155.4 10.4 15.0 上调Up-regulated 1.1E-02
scaffold1:142468|143089 Introgenic 128.5 9.0 14.3 上调Up-regulated 1.3E-02 whole_GLEAN_10029278 Protein Mut11
scaffold29:718451|719832 Introgenic 122.4 8.8 13.9 上调Up-regulated 1.4E-02 whole_GLEAN_10015276 E4 SUMO-protein ligase PIAL2
scaffold360:15097|17687 Introgenic 121.8 8.8 13.9 上调Up-regulated 1.4E-02 whole_GLEAN_10003361 Cytochrome c oxidase subunit 2
scaffold39:1205365|1205747 Intergenic 121.1 8.9 13.6 上调Up-regulated 1.5E-02
scaffold19:1034720|1049699 Introgenic 115.4 8.8 13.1 上调Up-regulated 1.6E-02 whole_GLEAN_10018479 Short-chain dehydrogenase/reductase 2b
scaffold27:1733501|1744156 Introgenic 102.4 8.0 12.8 上调Up-regulated 1.7E-02 whole_GLEAN_10015833 Large ribosomal RNA subunit accumulation protein YCED homolog 2
scaffold270:115352|115747 Introgenic 98.1 7.7 12.7 上调Up-regulated 1.8E-02 whole_GLEAN_10004138 Hypothetical protein
scaffold11:3427880|3429252 Introgenic 95.6 7.8 12.3 上调Up-regulated 2.0E-02 whole_GLEAN_10022104 Probable ubiquitin-like-specific protease 2B
scaffold5:2904984|2905988 Introgenic 96.1 7.9 12.1 上调Up-regulated 2.0E-02 whole_GLEAN_10026531 Transcription factor bHLH68
scaffold22:2902269|2903224 Introgenic 1019.2 88.3 11.5 上调Up-regulated 2.0E-02 whole_GLEAN_10017861 TATA-binding protein-associated factor BTAF1
scaffold41:1051261|1051835 Introgenic 333.0 30.0 11.1 上调Up-regulated 2.5E-02 whole_GLEAN_10013037 Probable E3 ubiquitin-protein ligase RHB1A
scaffold423:8362|8891 Introgenic 75.7 6.9 11.0 上调Up-regulated 2.6E-02 whole_GLEAN_10002921 NADH-ubiquinone oxidoreductase chain 2
scaffold50:971580|972301 Introgenic 75.7 6.9 11.0 上调Up-regulated 2.6E-02 whole_GLEAN_10022800 Uncharacterized conserved protein
scaffold29:144492|145002 Introgenic 1922.2 200.1 9.6 上调Up-regulated 2.6E-02 whole_GLEAN_10015203 A Plastidial ribosomal protein S1
scaffold423:7458|7843 Introgenic 69.4 6.5 10.6 上调Up-regulated 2.8E-02 whole_GLEAN_10002921 NADH-ubiquinone oxidoreductase chain 2
scaffold41:1051261|1051640 Introgenic 383.7 36.9 10.4 上调Up-regulated 3.0E-02 whole_GLEAN_10013037 Probable E3 ubiquitin-protein ligase RHB1A
scaffold128:291760|298584 Introgenic 244.6 25.7 9.5 上调Up-regulated 3.7E-02 whole_GLEAN_10007591 Histone-lysine N-methyltransferase ATXR6
scaffold42:575382|577290 Introgenic 248.1 26.2 9.5 上调Up-regulated 3.7E-02 whole_GLEAN_10012809 Uncharacterized conserved protein
scaffold4:4247567|4248126 Introgenic 238.8 25.3 9.4 上调Up-regulated 3.8E-02 whole_GLEAN_10027396 ALBINO3-like protein 2
scaffold26:228677|229118 Introgenic 233.3 25.6 9.1 上调Up-regulated 4.1E-02 whole_GLEAN_10016157 Protein BTR1
scaffold81:336505|338444 Introgenic 223.2 24.5 9.1 上调Up-regulated 4.1E-02 whole_GLEAN_10009183 Protein FORGETTER 1
scaffold8:474393|475508 Introgenic 633.7 72.5 8.7 上调Up-regulated 4.1E-02 whole_GLEAN_10024439 Uncharacterized protein At3g06530
scaffold3:3339987|3341286 Introgenic 246.4 27.5 8.9 上调Up-regulated 4.2E-02 whole_GLEAN_10028049 Aspartate aminotransferase 3
scaffold133:143853|144812 Introgenic 212.1 23.8 8.9 上调Up-regulated 4.3E-02 whole_GLEAN_10006440 Protein RNA-directed DNA methylation 3
scaffold16:2445618|2446250 Introgenic 203.6 23.3 8.7 上调Up-regulated 4.5E-02 whole_GLEAN_10019477 Alternative NAD(P)H-ubiquinone oxidoreductase C1
scaffold270:115352|115722 Introgenic 202.7 23.3 8.7 上调Up-regulated 4.5E-02 whole_GLEAN_10004138 Hypothetical protein
scaffold8:2674752|2676656 Introgenic 580.2 69.2 8.4 上调Up-regulated 4.6E-02 whole_GLEAN_10024738 COMPASS-like H3K4 histone methylase component WDR5A
scaffold360:11517|11838 Intergenic 560.1 68.9 8.1 上调Up-regulated 4.9E-02
scaffold12:2523138|2525034 Introgenic 529.5 65.4 8.1 上调Up-regulated 4.9E-02 whole_GLEAN_10021469 Tetraspanin-18
scaffold40:1450202|1450949 Introgenic 188.2 22.5 8.3 上调Up-regulated 5.0E-02 whole_GLEAN_10013727 Proline-rich receptor-like protein kinase PERK8
scaffold270:40371|40783 Introgenic 991.9 121.6 8.2 上调Up-regulated 5.0E-02 whole_GLEAN_10004133 Hypothetical protein
scaffold7:3133443|3134407 Introgenic 218.9 26.3 8.3 上调Up-regulated 5.0E-02 whole_GLEAN_10025435 DEAD-box ATP-dependent RNA helicase 13
scaffold69:125839|129078 Introgenic 195.2 23.4 8.3 上调Up-regulated 5.0E-02 whole_GLEAN_10010014 Exocyst complex component EXO70A1
scaffold38:37152|37816 Introgenic 181.8 22.1 8.2 上调Up-regulated 5.0E-02 whole_GLEAN_10013105 DNA replication licensing factor MCM2
scaffold9:1148862|1149242 Introgenic 196.3 24.4 8.0 上调Up-regulated 5.0E-02 whole_GLEAN_10023894 Pyrophosphate-energized vacuolar membrane proton pump
scaffold2:6347151|6348009 Introgenic 9.1 105.2 11.5 下调Down-regulated 2.3E-02 whole_GLEAN_10029246 N-Acetylglucosamine kinase

Fig. 4

Relative expression level of ten circRNAs stem bark tissues of MPS and TPS by qRT-PCR in ramie Abbreviations are the same as those given in Table 2."

[1] Aldaba V. The structure and development of the cell wall in plants I. Bast fibers of Boehmeria and Linum. Am J Bot, 1927,14:16-24.
[2] 蒋杰, 揭雨成, 周清明, 周精华, 朱守晶, 邢虎成, 钟英丽. 苎麻纤维素合酶基因BnCesAl全长cDNA的克隆与表达分析. 植物遗传资源学报, 2012,13:851-857.
Jiang J, Jie Y C, Zhou Q M, Zhou J H, Zhu S J, Xing H C, Zhong Y L. Full-length cDNA cloning and express analysis of BnCesA1 in ramie. J Plant Genet Resour, 2012,13:851-857 (in Chinese with English abstract).
[3] 刘昱翔, 陈建荣, 彭彦, 黄妤, 赵燕, 黄丽华, 郭清泉, 张学文. 两种苎麻纤维素合酶基因cDNA序列的克隆及表达. 作物学报, 2014,40:1925-1935.
Liu Y X, Chen J R, Peng Y, Huang Y, Zhao Y, Huang L H, Guo Q Q, Zhang X W. cDNA cloning and expression of two cellulose synthase genes from Boehmerianivea. Acta Agron Sin, 2014,40:1925-1935 (in Chinese with English abstract).
[4] 田志坚, 易蓉, 陈建荣, 郭清泉, 张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析. 作物学报, 2008,34:76-83.
Tian Z J, Yi R, Chen J R, Guo Q Q, Zhang X W. Cloning and expression of cellulose synthase gene in ramie [Boehmeria nivea (Linn.) Gaud.] Acta Agron Sin, 2008,34:76-83 (in Chinese with English abstract).
[5] 唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析. 作物学报, 2015,41:1324-1332.
Tang Y H, Chen J R, Liu F, Yuan Y M, Guo Q Q, Chang H T. cDNA cloning and analysis of cinnamoyl-CoA reductase gene from Boehmeria nivea. Acta Agron Sin, 2015,41:1324-1332 (in Chinese with English abstract).
[6] Liu F, Chen J, Tang Y, Chang H, Yuan Y, Guo Q. Isolation and characterization of cinnamate 4-hydroxylase gene from cultivated ramie (Boehmeria nivea). Biotechnol Biotechnol Equip, 2018,32:324-331.
[7] Tang Y, Liu F, Mao K, Xing H, Chen J, Guo Q. Cloning and characterization of the key 4-coumarate CoA ligase genes in Boehmeria nivea. South Afr J Bot, 2018,116:123-130.
[8] Tang Y, Liu F, Xing H, Mao K, Chen G, Guo Q, Chen J. Correlation analysis of lignin accumulation and expression of key genes involved in lignin biosynthesis of ramie (Boehmeria nivea). Genes, 2019,10:389.
[9] Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud.) BMC Genomics, 2013,14:125.
doi: 10.1186/1471-2164-14-125 pmid: 23442184
[10] Chen J, Pei Z, Dai L, Wang B, Liu L, An X, Peng D. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genomics, 2014,15:919.
[11] Batista P J, Chang H Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013,152:1298-1307.
[12] Wang J, Huang J S, Hao X Y, Feng Y P, Cai Y J, Sun L Q. miRNAs expression profile in bast of ramie elongation phase and cell wall thickening and end wall dissolving phase. Mol Biol Rep, 2014,41:901-907.
[13] Li X, Yang L, Chen L L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell, 2018,71:428-442.
[14] Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J, 2019,98:697-713.
[15] Zuo J, Wang Q, Zhu B, Luo Y, Gao L. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun, 2016,479:132-138.
[16] Wang Y, Wang Q, Gao L, Zhu B, Luo Y, Deng Z, Zuo J. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato. Physiol Plant, 2017,16:311-321.
[17] Yin J, Liu M, Ma D, Wu J, Han B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biol Technol, 2018,136:90-98.
[18] Wang Y, Yang M, Wei S, Qin F, Zhao H, Suo B. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci, 2016,7:2024.
doi: 10.3389/fpls.2016.02024 pmid: 28105043
[19] Gao Z, Li J, Luo M, Li H, Chen Q, Wang L, Song S, Zhao L, Xu W, Zhang C. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol, 2019,180:966-985.
doi: 10.1104/pp.18.01331 pmid: 30962290
[20] Luan M, Jian J, Chen P, Chen J, Chen J, Gao Q, Gao G, Zhou J H, Chen K, Guang X, Chen J, Zhang Q, Wang X, Fang L, Sun Z, Bai M, Fang X, Zhao S, Xiong H, Yu C, Zhu A. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich Mol Ecol Resour, 2018,18:639-645.
pmid: 29423997
[21] Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol, 2015,16:4.
[22] Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak S D, Gregersen L H, Munschauer M. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013,495:333.
[23] Li L, Guo J, Chen Y, Chang C, Xu C. Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genomics, 2017,18:80.
pmid: 28086788
[24] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014,15:550.
pmid: 25516281
[25] Ferreira J, Zwinderman A. On the Benjamini-Hochberg method. Ann Statist, 2006,34:1827-1849.
[26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
[27] Zhong R, Ye Z. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol, 2015,56:195-214.
[28] Speicher T, Li P, Wallace I. Phosphor regulation of the plant cellulose synthase complex and cellulose synthase-like proteins. Plants, 2018,7:52.
[29] Gui J, Luo L, Zhong Y, Sun J, Umezawa T, Li L. Phosphorylation of LTF1, an MYB transcription factor in populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Mol Plant, 2019,12:1325-1337.
pmid: 31145998
[30] Liu C, Yu H, Li L. SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana. PLoS Genet, 2019,15:e1007928.
[31] Huang J H, Qi Y P, Wen S X, Guo P, Chen X M, Chen L S. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep, 2016,6:22900.
[32] Sun X, Wang C, Xiang N, Li X, Yang S, Du J, Yang Y, Yang Y. Activation of secondary cell wall biosynthesis by miR319- targeted TCP4 transcription factor. Plant Biotechnol J, 2017,15:1284-1294.
[33] 骆甲, 王型力, 孙志超, 吴迪, 张玮, 王正加. 植物环状RNA研究进展. 遗传, 2018,40:467-477.
Luo J, Wang X L, Sun Z C, Wu D, Zhang W, Wang Z J. Progress in circular RNAs of plants. Hereditas, 2018,40:467-477 (in Chinese with English abstract).
[34] Chu Q J, Zhang X C, Zhu X T, Liu C, Mao L F, Ye C Y, Zhu Q H, Fan L J. PlantcircBase: a database for plant circular RNAs. Mol Plant, 2017,10:1126-1128.
doi: 10.1016/j.molp.2017.03.003 pmid: 28315753
[35] Wang K, Wang C, Guo B H, Song K, Shi C H, Jiang X, Wang K Y, Tan Y C, Wang L Q, Wang L, Li J J, Li Y, Cai Y, Zhao H W, Sun X Y. CropCircDB: a comprehensive circular RNA resource for crops in response to abiotic stress. Database, 2019. doi: 10.1093/database/baz053.
[36] Zhang X G, Ma X L, Ning L L, Li Z F, Zhao K K, Li K, He J L, Yin D M. Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.). BMC Genomics, 2019,20:653.
[37] Zhang J, Liu R, Zhu Y, Gong J, Yin S, Sun P, Feng H, Wang Q, Zhao S J, Wang Z Y, Li G. Identification and characterization of circRNAs responsive to methyl jasmonate in Arabidopsis thaliana. Int J Mol Sci, 2020,21:792.
[38] Li E, Bhargava A, Qiang W, Friedmann M C, Forneris N, Savidge R A, Johnson L, Mansfield S, Ellis B, Douglas C. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in populus. New Phytol, 2012,194:102-115.
doi: 10.1111/j.1469-8137.2011.04016.x pmid: 22236040
[39] Gong S, Huang G, Sun X, Qin L, Li Y, Zhou L, Li X. Cotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development. J Exp Bot, 2014,65:4133-4147.
pmid: 24831118
[40] Li S, Chen M, Yu D, Ren S, Sun S, Liu L, Liu C M. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell, 2013,25:1774-1786.
[41] Zhong R, Burk D H, Nairn C J, Wood-Jones A, Morrison W H, Ye Z H. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell, 2005,17:1449-1466.
[1] FU Hong-Yu, CUI Guo-Xian, LI Xu-Meng, SHE Wei, CUI Dan-Dan, ZHAO Liang, SU Xiao-Hui, WANG Ji-Long, CAO Xiao-Lan, LIU Jie-Yi, LIU Wan-Hui, WANG Xin-Hui. Estimation of ramie yield based on UAV (Unmanned Aerial Vehicle) remote sensing images [J]. Acta Agronomica Sinica, 2020, 46(9): 1448-1455.
[2] Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275.
[3] DO Thanh-Trung, LI Jian, ZHANG Feng-Juan, YANG Li-Tao, LI Yang-Rui,XING Yong-Xiu. Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane [J]. Acta Agron Sin, 2017, 43(09): 1337-1346.
[4] TAN He-Lin,XU Xin-Ying,FU Li-Man,XIANG Xiao-E,LI Jian-Qiao,GUO Hao-Lun,YE Wen-Xue. Cloningand Expression Pattern of DNA Methylase I (MET1) from Brassica napus L. and Its Progenitors [J]. Acta Agron Sin, 2015, 41(03): 405-413.
[5] LIU Yu-Xiang,CHEN Jiang-Rong,PENG Yan,HUANG Yu,ZHAO Yan,HUANG Li-Hua,GUO Qing-Quan,ZHANG Xue-Wen. cDNA Cloning and Expression of Two Cellulose Synthase Genes from Boehmeria nivea [J]. Acta Agron Sin, 2014, 40(11): 1925-1935.
[6] XU Wen-Ting,WANG Cheng,XU Xiao-Yang,NIU Er-Li,CAI Cai-Ping,GUO Wang-Zhen. Cloning and Functional Analysis of GhVacInc2a Encoding Vacuolar Invertase in Cotton [J]. Acta Agron Sin, 2014, 40(03): 390-396.
[7] MA Tian-Tian,PENG Qi,CHEN Song,ZHANG Jie-Fu. Differential Expression of Defense Related Genes in Brassica napus Infected by Sclerotinia sclerotiorum [J]. Acta Agron Sin, 2014, 40(03): 416-423.
[8] ZHOU Jing-Hua,YU Wei-Lin,XING Hu-Cheng,JIE Yu-Cheng,ZHONG Ying-Li,JING Li-Heng. Cloning and Characterization of ACC Synthase Gene (BnACS1) from Ramie (Boehmeria nivea) [J]. Acta Agron Sin, 2012, 38(12): 2306-2311.
[9] XIA Jia-Ping,GUO Hui-Jun,XIE Yong-Dun,ZHAO Lin-Shu,GU Jia-Yu,ZHAO Shi-Rong,LI Jun-Hui,LIU Lu-Xiang. Differential Expression of Chloroplast Genes in Chlorophyll-Deficient Wheat Mutant Mt135 Derived from Space Mutagenesis [J]. Acta Agron Sin, 2012, 38(11): 2122-2130.
[10] ZHENG Wei-Jun,XU Zhao-Shi,FENG Zhi-Juan,LI Lian-Cheng,CHEN Ming,CHAI Shou-Cheng,MA You-Zhi. Genome-Wide Identification, Classification, and Expression of NF-YB Gene Family in Soybean [J]. Acta Agron Sin, 2012, 38(09): 1570-1582.
[11] ZOU Zi-Zheng,CHEN Jian-Hua,LUAN Ming-Bao,GUO Jin-Xia,WANG Chao,WANG Xiao-Fei,XU Ying,SUN Zhi-Min. Evaluation of Genetic Relationship in Ramie Based on RSAP, SRAP, and SSR [J]. Acta Agron Sin, 2012, 38(05): 840-847.
[12] ZHANG Rui, LV Fen-Ni, WANG Hai-Hai, GUO Wang-Zhen. Identification and Characterization of a Novel Fiber Mutant from Transgenic Progeny in Gossypium hirsutum L. [J]. Acta Agron Sin, 2012, 38(01): 36-42.
[13] DING Guang-Zhou, HOU Jing, CHEN Li, MA Feng-Ming, CHEN Lian-Jiang. Cloning of nia Gene and Its Differential Expression Induced by Different Nitrogen Forms in Sugar Beet (Beta vulgaris L.) [J]. Acta Agron Sin, 2011, 37(11): 1949-1955.
[14] LI Li, WANG Shu-Peng, ZHANG Gai-Sheng, WANG Liang-Ming, SONG Yu-Long, ZHANG Long-Yu, NIU Na, MA Shou-Cai. Comparison of Floret Intact Chloroplast Proteome in Male Sterile Line induced by CHA-SQ-1, Cytoplasmic-Nuclear Sterile and Its Normal Fertile Lines in Wheat [J]. Acta Agron Sin, 2011, 37(07): 1134-1143.
[15] SHE Wei, HE Yu-Cheng, GENG Hu-Cheng, LU Yan-Wei, HUANG Meng, KANG Mo-Li, WANG Dong. Comparison and Screening Indicators for Ramie (Boehmeria nivea) Genotypes Tolerant to Cadmium [J]. Acta Agron Sin, 2011, 37(02): 348-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!