Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1138-1148.doi: 10.3724/SP.J.1006.2021.03043

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A study of expression pattern of auxin response factor family genes in maize (Zea mays L.)

LI Wen-Lan(), LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong*()   

  1. Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Jinan 250100, Shandong, China
  • Received:2020-07-07 Accepted:2020-11-13 Online:2021-06-12 Published:2021-04-02
  • Contact: MENG Zhao-Dong E-mail:liwenlantutu@126.com;mengzhd@126.com
  • Supported by:
    The Natural Science Foundation of Shandong Province(ZR2019BC107)

Abstract:

Auxin response factors (ARFs) are important transcription factors which control the expression of target genes by binding specifically to auxin response elements, and are involved in a series of developmental processes in plant species. In maize genome, dozens of ARF genes are encoded, however, there is little known on their expression patterns. In this study, the analysis on the expression level of ARF genes in diverse tissues and organs revealed that expression level of 32 ARF genes were higher in reproductive organs than that in vegetative organs, except ARF10, ARF16, and ARF34 constitutively expressed. The predicted results of cis-acting elements showed that the promoter regions of 28 ARF genes harbored the cis-regulatory elements related to abiotic stresses. Real-time quantitative PCR results indicated that expression of several ARF genes showed a response to cold, heat, and osmotic stresses, respectively. The results highlighted the importance of ARF family genes in reproductive growth and abiotic stress response, and provided useful information for the comprehensive analysis of the biological function of ARF genes in maize.

Key words: auxin response factor, expression, abiotic stress, maize (Zea mays L.)

Table 1

Primer sequences for real-time quantitative PCR"

基因名
Gene name
基因号
Gene accession
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
ARF1 Zm00001 arf1-s CGTGTATATGTATCCTTCC
d030803 arf1-a ATTGTCTTCTGAGTACCA
ARF2 Zm00001 arf2-s AAACGACTCTGGGTATGT
d031064 arf2-a CTGAAGGACTTGTGTCTG
ARF3 Zm00001 arf3-s AACGGCATCTCTAACTAC
d031522 arf3-a ACGAATCTATGGAATTGAAC
ARF4 Zm00001 arf4-s AGTTCCGATGGCAGTGTT
d032683 arf4-a CGAGGAACCGATGCAGAT
ARF5 Zm00001 arf5-s CGCAACAACAACAGGCATG
d001879 arf5-a GGGCTAAAAAGGGACTGGTT
ARF6 Zm00001 arf6-s AATCTCAGCAGCAGTTAA
d001945 arf6-a CTTGGGACTCTTGGTTTA
ARF7 Zm00001 arf7-s CTAGTGACGCCCTGTACC
d003601 arf7-a AGTAATAGACACGCTCGC
ARF8 Zm00001 arf8-s GTAGTTGAAGTGGATAATTGTT
d041056 arf8-a TCTGGAGAAGGCTGATTA
ARF9 Zm00001 arf9-s TCTGAACCTCTGGTATCC
d041056 arf9-a AACAATTATCCACTTCAACTAC
ARF10 Zm00001 arf10-s TGAACTCGAAATCAGCTGC
d042267 arf10-a AACTCCAACCTCCACTTGC
ARF11 Zm00001d arf11-s ATGTTACAGGGAATGGGAATG
043431 arf11-a CAACAGTTTGAGGAGCAGACG
ARF12 Zm00001d arf12-s ATGGTAGACTTGATAGGA
043922 arf12-a CATATTCACAGTTCCAGTA
ARF13 Zm00001d arf13-s CAAGGCAATCACAATCTG
049295 arf13-a CTGTCTGTTCATCCCAAA
ARF14 Zm00001d arf14-s AATGACCGTTCTACTCCAATCA
050781 arf14-a CTATCTCAATGCCAAACAATCT
ARF15 Zm00001d arf15-s ATGAGGTCTTCGCCAGGAT
051172 arf15-a GGACTGTGTCAGCGTCTTG
ARF16 Zm00001d arf16-s AGAACATTGCTGATAGAT
053819 arf16-a TTGTGTATGACCTTGAAT
ARF17 Zm00001d arf17-s CCGTATATCCAAGGGTTTTG
014013 arf17-a ATGTGGGGTCTCTTTATGTCA
ARF18 Zm00001d arf18-s GCAGCAGATGGGGAAGCA
014377 arf18-a AACTCGACCGAACCGACG
ARF19 Zm00001d arf19-s AGAGGACGGCGGCAAGAT
014507 arf19-a TGCTCGCCCTCGGGTAGT
ARF20 Zm00001d arf20-s CCACCAATGAAGCAAGAA
015243 arf20-a GATAGACAACATCTGACACAT
ARF21 Zm00001d arf21-s AACAGAACAGCATTCAGT
014690 arf21-a TGATTCAGTGGAAGAGATG
ARF22 Zm00001d arf22-s GCTTTCCGCCAGCCTCA
016838 arf22-a CCGGTGTCACCACCGATG
基因名
Gene name
基因号
Gene accession
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
ARF23 Zm00001d arf23-s CTGAGAGGACGGTGAGCAA
000358 arf23-a CGCGACAGCCGAGAGGT
ARF24 Zm00001d arf24-s GCCACTTTCAAGTCAGATT
036593 arf24-a TTGGATTGTGCTCTCAGA
ARF25 Zm00001d arf25-s CCCTCTTCTGTTCTTATGTTT
038698 arf25-a TACTTCTTCACGGTTGGT
ARF26 Zm00001d arf26-s GCATTCGCCCTCTTCTGTT
038698 arf26-a AGGCTCGCTTCCATTTACA
ARF27 Zm00001d arf27-s TTCCATCTCAATCCTCAT
039006 arf27-a TCTATCCTCTTTCTTATTCAC
ARF28 GRMZM2 arf28-s TTATGGTTCCAATACAAGAA
G075715 arf28-a CTCATTCCTATTCCTTAGC
ARF29 Zm00001d arf29-s TTCAAGATCAGGGTTCAG
011953 arf29-a GATTCAACCGTCAGAGAA
ARF30 Zm00001d arf30-s CAAGTTCTTCAACATCAG
045026 arf30-a ATCCTGTATTATGGTTCAA
ARF31 Zm00001d arf31-s ACTCGCTGGGAAGAGGGCT
023659 arf31-a CCTTTTGTCTGCTTCACCAC
ARF32 Zm00001d arf32-s AGCTGGTGCGGGGCAAC
025871 arf32-a CCTGCAAGGCCTCAATGAC
ARF33 Zm00001d arf33-s AGTTGAATGCTCTTGGTA
026540 arf33-a GTGAATCTGTGCTTCTTG
ARF34 Zm00001d arf34-s ATGCTGGGTTGTTTGGTT
026590 arf34-a GCGGCTAGAAAGTGGAAT
ARF35 Zm00001d arf35-s ATGATATTGGAGCAGATG
026687 arf35-a AAGAGCATTATGGTGTTC
18S rRNA 18S-s AAACGGCTACCACATCCAAG
18S-a CCTCCAATGGATCCTCGTTA

Fig. 1

Expression patterns of ARF genes in different tissues and organs R: root; ST: stem; L: leaf; S: seedling; T: tassel; E: ear. Values marked with different letters indicate significant differences at P < 0.05 by Duncan’s multiple range tests."

Fig. 2

Expression profile of ARF genes in different tissues of maize by Genevestigator analysis The relative expression of each gene in all detected tissues and organs was set at 100%, and the shade of color represents the percentage of relative expression levels."

Table 2

Putative cis-acting elements identified from the promoter regions of ARF genes in maize"

基因
Gene
元件A
Element A
元件B
Element B
元件C
Element C
ARF1 ABRE1, AuxRR-core1, CGTCA-motif2, P-box2,
TGA-element2, TGACG-motif2
MBS1
ARF2 ABRE3, CGTCA-motif3, P-box1, TGACG-motif3 CAT-box2
ARF3 ABRE3, CGTCA-motif4, GARE-motif1, P-box1, TGACG-motif4 CAT-box2 TCA-element2, LTR1
ARF4 ABRE1, CGTCA-motif1, P-box1, TGACG-motif1 GCN4_motif1 LTR1, MBS1
ARF5 ABRE1, CGTCA-motif1, GARE-motif1, TGA-element1, TGACG-motif1 CAT-box3 TCA-element1, LTR2
ARF6 ABRE2, CGTCA-motif1, TGA-element1, TGACG-motif1 CAT-box2, RY-element1 MBS1
ARF7 ABRE2, CGTCA-motif1, TGA-element1, TGACG-motif1 CAT-box1 LTR3, MBS1
ARF8 ABRE2, CGTCA-motif3, GARE-motif1, TGACG-motif3 LTR1, MBS1, TC-rich repeats1
ARF9 ABRE2, CGTCA-motif3, GARE-motif1, TGACG-motif3 LTR1, MBS1, TC-rich repeats1
ARF10 ABRE1, CGTCA-motif5, TGACG-motif5
ARF11 ABRE2, CGTCA-motif2, TGA-element1, TGACG-motif2 CAT-box2 TCA-element1
ARF12 ABRE1, CGTCA-motif1, TGACG-motif1 CAT-box1 MBS2
ARF13 ABRE2, CGTCA-motif2, P-box1, TGACG-motif2 TC-rich repeats1
ARF14 ABRE2, TGA-element1 TCA-element2
ARF15 CGTCA-motif3, TGA-element1, TGACG-motif3 LTR1, MBS1
ARF16 ABRE1, AuxRR-core1, CGTCA-motif2, TGACG-motif2 CAT-box3
ARF17 ABRE1, CGTCA-motif4, TGA-element1, TGACG-motif4 RY-element1 MBS1, TCA-element1
ARF18 ABRE2, CGTCA-motif1, P-box1, TGACG-motif1 MBS1
ARF19 P-box1 CAT-box1 LTR1, MBS1, TCA-element1
ARF20 ABRE3, CGTCA-motif1, TGA-element1, TGACG-motif1 LTR1, TCA-element1
ARF21 ABRE7, CGTCA-motif2, TGACG-motif2 MBS1
ARF22 ABRE6, CGTCA-motif2, GARE-motif1, TGACG-motif2 CAT-box1
ARF23 ABRE4, AuxRR-core1, CGTCA-motif1, TGA-element2, TGACG-motif1 CAT-box1 LTR1, MBS2, TCA-element1
ARF24 ABRE3, CGTCA-motif2, GARE-motif1, P-box2, TGACG-motif2 MBS1, TCA-element1
ARF25 ABRE1, CGTCA-motif1, P-box1, TGACG-motif1 CAT-box3 LTR1, TC-rich repeats1
ARF26 ABRE1, CGTCA-motif1, P-box1, TGACG-motif1 CAT-box3 LTR1, TC-rich repeats1
ARF27 ABRE4, GARE-motif1 RY-element1
ARF28 ABRE1, CGTCA-motif2, GARE-motif1, TGACG-motif2 CAT-box2 MBS2, TCA-element2
ARF29 ABRE3, AuxRR-core1, CGTCA-motif1, TGACG-motif1 CAT-box1 LTR1
ARF30 ABRE6, CGTCA-motif4, TGACG-motif4 circadian1 MBS2, TC-rich repeats1
ARF31 ABRE1, CGTCA-motif2, TGACG-motif2 circadian1 LTR2
ARF32 ABRE5, CGTCA-motif1, TGACG-motif1 CAT-box1, GCN4_motif1, RY-element3 TCA-element1
ARF33 ABRE4, CGTCA-motif3, GARE-motif1, TGA-element1, TGACG-motif3 CAT-box4, RY-element1
ARF34 ABRE1, GARE-motif1, TGA-element1 CAT-box2 LTR1
ARF35 ABRE3 MBS1

Fig. 3

Transcriptional patterns of ARF genes under different stress treatments A: cold stress treatment; B: hot stress treatment; C: NaCl stress treatment; D: osmotic stress treatment."

[1] 吴蓓, 吴建勇, 蔡刘体, 李运合, 黄学林. 生长素反应因子. 植物生理学通讯, 2005,41:273-278.
Wu B, Wu J Y, Cai L T, Li Y H, Huang X L. Auxin response factor. Plant Physiol Commun, 2005,41:273-278 (in Chinese).
[2] Abel S, Theologis A. Early genes and auxin action. Plant Physiol, 1996,111:9.
[3] Ulmasov T, Hagen G, Guifoyle T J. Dimerization and DNA binding of auxin response factors. Plant J, 1999,19:309-319.
[4] Liu Z B, Hagen G, Guifoyle T J. A G-box-binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain. Plant Physiol, 1997,115:397-407.
[5] Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y Z. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007,394:13-24.
[6] Singh V K, Rajkumar M S, Garg R, Jain M. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea. Sci Rep, 2017,7:10895.
pmid: 28883480
[7] Die J V, Gil J, Millan T. Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics, 2018,19:301.
[8] Zhou X, Wu X, Li T, Jia M, Liu X, Zou Y, Liu Z X, Wen F. Identification, characterization, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon. Funct Integr Genomic, 2018,18:709-724.
[9] Xu Z, Ji A, Song J, Chen S. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open, 2016,5:848-857.
[10] Wang S, Hagen G, Guilfoyle T J. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin- responsive gene expression. Plant Signal Behav, 2013,8:e24526.
[11] Remington D L, Vision T J, Guilfoyle T J, Reed J W. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol, 2004,135:1738-1752.
[12] Hardtke C S, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998,17:1405-1411.
[13] Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000,12:757-770.
[14] Okushima Y, Overvoorde P J, Aeima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B. Lui A, Nguyen D. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 2005,17:444-463.
[15] Wilmoth J C, Wang S, Tiwari S B, Joshi A D, Hagen G, Guifoyle T J, Alonso J M, Ecker J R, Reed J W. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J, 2005,43:118-130.
pmid: 15960621
[16] Nagpal P, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, Hagen G, Alonso J M, Cohen J D, Farmer E E. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005,132:4107-4118.
[17] Faivre-rampant O, Cardle L, Marshall D, Viola R, Taylor M A. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J Exp Bot, 2004,55:613-622.
[18] Waller F, Furuya M, Nick P. OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol, 2002,50:415-425.
[19] Jones B, Frasse P, Olmos E, Zegzouti H, Li Z G, Latche A, Pech J C, Bouzayen M. Down-regulation of DR12, an auxin response factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J, 2002,32:603-613.
[20] Liu Y, Jiang H Y, Chen W J, Qian Y X, Ma Q, Cheng B J, Zhu S W. Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays). Plant Growth Regul, 2011,63:225-234.
[21] Grennan A K. Genevestigator. Facilitating web-based gene expression analysis. Plant Physiol, 2006,141:1164-1166.
[22] Lescot M, Dehais P G, Marchal K, Moreau Y, Peer Y V, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002,30:325-327.
[23] Galli M, Liu Q, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015,112:13372-13377.
[24] Xing H Y, Pudake R N, Guo G G, Xing G F, Hu Z R, Zhang Y R, Sun Q X, Ni Z F. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics, 2011,12:178.
[25] Ulmasov T, Hagen G, Guilfoyle T J. Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci USA, 1999,96:5844-5849.
pmid: 10318972
[26] Matthes M S, Best N B, Robil J M, Malcomber S, Gallavotti A, Mcsteen P. Auxin evodevo: conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling. Mol Plant, 2019,12:298-320.
[27] Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X L. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol, 2018,59:179-189.
pmid: 29145642
[28] Hardtke C S, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998,17:1405-1411.
[29] Wenzel C L, Schuetz M, Yu Q, Mattsson J. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J, 2007,49:387-398.
[30] Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006,133:4211-4218.
pmid: 17021043
[31] 王垒, 陈劲枫, 娄丽娜, 娄群峰. 黄瓜ARF家族序列特征及部分成员在果实发育早期的表达分析. 园艺学报, 2011,4:717-724.
Wang L, Chen J F, Lou L N, Lou Q F. Sequence characteristics of ARF gene family of cucumber and an expression analysis of some members during early development of fruits. Acta Hortic Sin, 2011,4:717-724 (in Chinese with English abstract).
[32] Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, Nemhauser J L, Schmitz R J, Gallavotti A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun, 2018,9:4526.
doi: 10.1038/s41467-018-06977-6 pmid: 30375394
[33] 王佳伟, 蔡文娟, 王凌健, 毛颖波, 陈晓亚. 生长素响应因子ARF10和16控制拟南芥根冠发育. 见: 中国遗传学会植物遗传与基因组学专业委员会2005年学术研讨会论文摘要集, 2005. p 15.
Wang J W, Cai W J, Wang L J, Mao Y B, Chen X Y. Auxin response factors ARF10 and 16 control root crown development in Arabidopsis thaliana. In: Genetics Society of China in plant Genetics and Genomics Professional Committee Conference Abstract Set, 2005. p 15 (in Chinses).
[34] Ha C V, Le D T, Nishiyama R, Watanabe Y, Sulieman S, Tran U T, Mochida K, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res, 2013,20:511-524.
pmid: 23810914
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[4] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[5] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[6] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[7] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[8] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[9] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[10] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[11] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[12] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[13] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[14] YU Guo-Wu, QING Yun, HE Shan, HUANG Yu-Bi. Preparation and application of polyclonal antibody against SSIIb protein from maize [J]. Acta Agronomica Sinica, 2022, 48(1): 259-264.
[15] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!