Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2765-2773.doi: 10.3724/SP.J.1006.2022.14143

Previous Articles     Next Articles

Downstream target gene network regulated by AhGLK1 and AhHDA1 using ChIP-seq in peanut

LIU Xing1(), SU Liang-Chen1, LI Li-Mei2, LI Ling2,*()   

  1. 1Department of Bioengineening, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, Guangdong, China
    2Guangdong Provincial Key Laboratory of Biotechnology for Plant Development / School of Life Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
  • Received:2021-08-10 Accepted:2021-11-29 Online:2022-11-12 Published:2021-12-17
  • Contact: LI Ling E-mail:liuxingas@126.com;Liling502@126.com
  • Supported by:
    The Department of Science and Technology of Guizhou Province(ZK2021-127);The National Natural Science Foundation of China(31671600)

Abstract:

Peanut (Arachis hypogaea L.) is an important economic and edible oil crop whose growth, yield and quality are seriously affected by drought stress. In order to further investigate the mechanism of drought tolerance in peanut, chromatin immunoprecipitation sequence (ChIP-seq) was conducted to analyze immunoaffinity separation of specific binding DNA fragments with AhHDA1 (Arachis hypogaea L. histone deacetylase 1) and transcription factor AhGLK1 (Arachis hypogaea L. Golden2-like 1) for sequence identification, revealing the downstream target gene networks regulated by AhHDA1 and AhGLK1. Through alignment and analysis, 65.71, 63.90, and 70.06 million clean beads were obtained for GLKHDA and input IP from the sequencing run, respectively. The unique alignment of reads to the reference genome sequence were 74.97%, 76.81%, and 76.75%, respectively. GLK-IP obtained 714 peaks and HDA-IP obtained 543 peaks. Peaks were distributed into exons, introns, upstream, downstream, intergenic and other functional elements. GO enrichment revealed that 35.1% and 32.8% of the peak-related genes of AhGLK1-IP and AhHDA1-IP were enriched in “molecular function”. 39.3% and 44.2% were enriched in “biological process” and 25.5% and 22.8% were enriched in “cellular components”, respectively. KEGG pathway enrichment showed that AhGLK1-IP related genes were significantly enriched in metabolic, biosynthesis of antibiotics, glyoxylate and dicarboxylate metabolism, microbial metabolism in diverse environments, carbon metabolism, biosynthesis of secondary metabolites and biosynthesis of amino acids pathways. Whereas, AhHDA1-IP related genes were significantly enriched in N-glycan biosynthesis, arginine, proline and phenylalanine metabolism pathways. Moreover, there were four common peaks enriched both in AhGLK1-IP and AhHDA1-IP. A common conserved motif sequences (AGAA/T) was presented in the motif sequences specifically enriched by AhGLK1-IP and AhHDA1-IP. These results of the study have some reference value for further understanding the functions of AhGLK1 and AhHDA1 genes and the regulatory mechanism of peanuts in response to drought stress and post-drought recovery growth.

Key words: Arachis hypogaea L., chromatin immunoprecipitation sequence, AhGLK1, AhHDA1, target gene

Table 1

Statistics of ChIP-seq data output"

样品名
Sample name
序列总数
No. of total sequences
碱基总数
No. of total bases
GC
(%)
Q20
(%)
Q30
(%)
GLK-IP 65,712,234 9,856,835,100 41.50 97.60 93.96
HDA-IP 63,903,912 9,85,586,800 40.73 97.61 93.96
Input 70,062,804 10,509,420,600 40.49 97.43 93.58

Table 2

Statistics of data comparison results"

样品名
Sample
总序列数
No. of total
sequences
比对序列数
No. of aligned
sequences
比对率
Aligned rate
(%)
唯一比对序列数
No. of unique aligned
sequences
唯一比对率
Unique aligned rate
(%)
GLK-IP 65,133,710 60,248,717 92.50 48,828,873 74.97
HDA-IP 63,362,432 59,643,659 94.13 48,666,448 76.81
Input 69,408,066 68,607,870 98.85 53,268,396 76.75

Table 3

Peak information statistics"

样品名
Sample name
Peak数
Peak number
Peak总长度
Peak total
length
Peak平均长度
Peak average length
Peak总序列深度
Peak total sequence depth
Peak平均序列度
Peak average sequence degree
基因组比例
Genome rate
(%)
GLK-IP 714 416,446 583 11,224 15 0.02
HDA-IP 543 298,118 549 7764 14 0.01

Fig. 1

Peak distribution of AhGLK1 and AhHDA1 enriched genes"

Fig. 2

GO classification of AhGLK1 and AhHDA1 enriched genes"

Fig. 3

KEGG pathway of AhGLK1 and AhHDA1 enriched genes A: AhGLK1-IP related genes; B: AhHDA1-IP related genes."

Table 4

Distribution of AhGLK1 and AhHDA1-IP related genes in different KEGG pathways"

样品
Sample name
KEGG通路
KEGG pathway
基因个数
Gene number
基因ID
Gene ID
AhGLK-IP 代谢途径
Metabolic pathways
20 Arahy.14YEDZ, Arahy.46RTPJ, Arahy.46W7S4, Arahy.6Q1KS5, Arahy.8T1UF6, Arahy.C0Q7J8, Arahy.CQFZ3U, Arahy.D1ZPVC, Arahy.IC3HGI, Arahy.LT225G, Arahy.MY1TBE, Arahy.NDL7Z2, Arahy.S45BII, Arahy.S8DJY1, Arahy.SKV00U, Arahy.SP7CPF, Arahy.U4VZKL, Arahy.VD5UEC, Arahy.YS6PIM, Arahy.ZZNJ3G
抗生素生物合成
Biosynthesis of antibiotics
8 Arahy.46W7S4, Arahy.8T1UF6, Arahy.C0Q7J8, Arahy.CQFZ3U, Arahy.NDL7Z2, Arahy.S45BII, Arahy.SP7CPF, Arahy.U4VZKL
二羧酸代谢
Glyoxylate and dicarboxylate metabolism
3 Arahy.NDL7Z2, Arahy.S45BII, Arahy.VD5UEC
不同环境中微生物代谢
Microbial metabolism in diverse environments
6 Arahy.CQFZ3U, Arahy.NDL7Z2, Arahy.S45BII, Arahy.SP7CPF, Arahy.U4VZKL, Arahy.VD5UEC
碳代谢
Carbon metabolism
5 Arahy.CQFZ3U, Arahy.NDL7Z2, Arahy.S45BII, Arahy.U4VZKL, Arahy.VD5UEC
次生代谢生物合成
Biosynthesis of secondary metabolites
12 Arahy.46W7S4, Arahy.6Q1KS5, Arahy.8T1UF6, Arahy.C0Q7J8, Arahy.CQFZ3U, Arahy.IC3HGI, Arahy.NDL7Z2, Arahy.S45BII, Arahy.SP7CPF, Arahy.U4VZKL, Arahy.YS6PIM, Arahy.ZZNJ3G
AhHDA-IP N聚糖生物合成
N-Glycan biosynthesis
3 Arahy.6B4W14,Arahy.7LT28F, Arahy.YXCZ83
精氨酸和脯氨酸代谢
Arginine and proline metabolism
3 Arahy.EJ6Q9X, Arahy.GRS0A1, Arahy.UIG78U
苯丙氨酸代谢
Phenylalanine metabolism
2 Arahy.21PEZK, Arahy.SGZ2CH

Fig. 4

Common peak distribution of the ChIP-seq reads of AhGLK1 and AhHDA1"

Fig. 5

Motif sequence of AhGLK1 and AhHDA1-IP"

[1] Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7
[2] 邓斌, 李玲, 李晓云, 苏良辰, 崔威韬, 冯锦欣. AhHDA1异源表达影响拟南芥植株干旱性. 华南师范大学学报(自然科学版), 2016, 48(5): 52-57.
Deng B, Li L, Li X Y, Su L C, Cui W T, Feng J X. Heterologous expression of AhHDA1 affects drought resistance of Arabidopsis plants. J South Chin Nor (Nat Sci Edn), 2016, 48(5): 52-57. (in Chinese with English abstract)
[3] Su L, Liu S, Liu X, Zhang B, Li M, Zeng L, Li L. Transcriptome profiling reveals histone deacetylase 1 gene overexpression improves flavonoid, isoflavonoid, and phenylpropanoid metabolism in Arachis hypogaea hairy roots. PeerJ, 2021, 9: e10976.
doi: 10.7717/peerj.10976
[4] 苏良辰. AhHDA1在花生响应干旱和ABA信号中的分子机制研究. 华南师范大学博士学位论文, 广东广州, 2017.
Su L C. Study on the Molecular Mechanism of AhHDA1 Responding to Drought and ABA Signal in Arachis hypogaea L. PhD Dissertation of South China Normal University, Guangzhou, Guangdong, China, 2017. (in Chinese with English abstract)
[5] 李媚娟, 苏良辰, 刘帅, 李晓云, 李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析. 作物学报, 2017, 43: 218-225.
doi: 10.3724/SP.J.1006.2017.00218
Li M J, Su L C, Liu S, Li X Y, Li L. Screening of AhHDA1 interacting-protein AhGLK and characterization in peanut (Arachis hypogaea L.). Acta Agron Sin, 2017, 43: 218-225. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00218
[6] Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep, 2018, 8: 2250.
doi: 10.1038/s41598-018-20542-7
[7] Liu X, Li L, Zhang B, Zeng L, Li L. AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress. Plant Sci, 2020, 294: 110461.
doi: 10.1016/j.plantsci.2020.110461
[8] 蔡大伟. 基于ChIP-seq全基因组识别毛竹笋尖与鞭笋尖组蛋白修饰位点. 福建农林大学硕士学位论文, 福建福州, 2017.
Cai D W. Genome-wide Mapping of Histone Modifications of Shoot Tips and Rhizome Shoot Tips in Moso bamboo by ChIP-seq. MS Thesis of FuJian Agriculture and Forestry University, Fuzhou, Fujian, China, 2017. (in Chinese with English abstract)
[9] Lismer A, Lambrot R, Lafleur C, Dumeaux V, Kimmins S. ChIP-seq protocol for sperm cells and embryos to assess environmental impacts and epigenetic inheritance. STAR Protoc, 2021, 2: 100602.
doi: 10.1016/j.xpro.2021.100602
[10] Liu S, Li M, Su L, Ge K, Li L, Li X, Liu X, Li L. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Sci Rep, 2016, 6: 37943.
doi: 10.1038/srep37943
[11] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[12] Emes M J, Tetlow I J, Bowsher C G. Integration of metabolism within non-photosynthetic plastids, and with the cytosol. Regul Primary Metabolic Pathways Plants, 1999, 42: 117-136.
[13] 苏良辰, 钟钰婷, 李玲. AhHDA1对花生毛状根干旱的生理调节作用. 植物生理学报, 2017, 53: 1893-1900.
Su L C, Zhong Y T, Li L. Physiological regulation effect of AhHDA1 on peanut hairy roots to drought stress. PlantPhysiol J, 2017, 53: 1893-1900. (in Chinese with English abstract)
[14] Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell, 2009, 21: 1109-1128.
doi: 10.1105/tpc.108.065250 pmid: 19376934
[15] Savitch L V, Subramaniam R, Allard G C, Singh J. The GLK1 ‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. BiochemBiophys Res Commun, 2007, 359: 234-238.
doi: 10.1016/j.bbrc.2007.05.084
[16] Zubo Y O, Blakley I C, Franco-Zorrilla J M, Yamburenko M V, Solano R, Kieber J J, Loraine A E, Schaller G E. Coordination of chloroplast development through the action of the GNC and GLK transcription factor families. Plant Physiol, 2018, 178: 130-147.
doi: 10.1104/pp.18.00414 pmid: 30002259
[1] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[2] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[3] HU Dong-Xiu, LIU Hao, HONG Yan-Bin, LIANG Xuan-Qiang, CHEN Xiao-Ping. Identification and expression analysis of microRNA during peanut (Arachis hypogaea L.) pod development [J]. Acta Agronomica Sinica, 2021, 47(4): 613-625.
[4] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
[5] LI Mei-Juan,SU Liang-Chen,LIU Shuai,LI Xiao-Yun*,LI Ling*. Screening of AhHDA1 Interacting-Protein AhGLK and Characterization in Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2017, 43(02): 218-225.
[6] LI Ni-Na,DING Lin-Yun,ZHANG Zhi-Yuan,GUO Wang-Zhen. Isolation of Mesophyll Protoplast and Establishment of Gene Transient Expression System in Cotton [J]. Acta Agron Sin, 2014, 40(02): 231-239.
[7] ZHANG Zhi-Ming, SONG Rui, PENG Hua, LUO Mao, SHEN Ya-Ou, LIU Li, ZHAO Mao-Jun, PAN Guang-Tang. Bioinformatic Prediction of MicroRNAs and Their Target Genes in Maize [J]. Acta Agron Sin, 2010, 36(08): 1324-1335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!