Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 553-564.doi: 10.3724/SP.J.1006.2022.11039
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Dan1**(), ZHOU Cai-E1**, WANG Xiao-Ting1, WU Qi-Meng1, ZHANG Xu1, WANG Qi-Lin1, ZENG Qing-Dong2, KANG Zhen-Sheng2, HAN De-Jun1,*(), WU Jian-Hui1,*()
[1] | 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5):1-12. |
Han D J, Kang Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protect, 2018, 44(5):1-12 (in Chinese with English abstract). | |
[2] | 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46:4254-4262. |
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013, 46:4254-4262 (in Chinese with English abstract). | |
[3] | 何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44:2193-2215. |
He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011, 44:2193-2215 (in Chinese with English abstract). | |
[4] | 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48:3439-3453. |
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 17:3439-3453 (in Chinese with English abstract). | |
[5] |
Wu J, Wang X, Chen N, Yu R, Yu S, Wang Q, Huang S, Wang H, Singh R P, Bhavani S, Kang Z, Han D, Zeng Q. Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis, 2020, 104:1751-1762.
doi: 10.1094/PDIS-12-19-2663-RE |
[6] | Ellis J G, Lagudah E S, Spielmeyer W, Dodds P N. The past, present and future of breeding rust resistant wheat. Front Plant Sci, 2014, 5:641. |
[7] |
Brown J K. Durable resistance of crops to disease: a Darwinian perspective. Annu Rev Phytopathol, 2015, 53:513-539.
doi: 10.1146/phyto.2015.53.issue-1 |
[8] |
Niks R E, Qi X, Marcel T C. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu Rev Phytopathol, 2015, 53:445-470.
doi: 10.1146/phyto.2015.53.issue-1 |
[9] |
Singh R P, Singh P K, Rutkoski J, Hodson D P, He X, Jorgensen L N, Hovmoller M S, Huerta-Espino J. Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol, 2016, 54:303-322.
doi: 10.1146/annurev-phyto-080615-095835 pmid: 27296137 |
[10] |
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From genetic stock to genome editing: gene exploitation in wheat. Trends Biotechnol, 2018, 36:160-172.
doi: 10.1016/j.tibtech.2017.10.002 |
[11] |
IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
doi: 10.1126/science.aar7191 |
[12] |
Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, Yu K, Chen Y, Wang X, Guan P, Appels R, Peng H, Ni Z, Sun Q. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun, 2020, 11:5085.
doi: 10.1038/s41467-020-18738-5 |
[13] |
Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, Xu D, Chen H, Wang Y, Wang Y, Liu S, Jiao C, Lu H, Wang J, Yin C, Jiao Y, Lu F. Triticum population sequencing provides insights into wheat adaptation. Nat Genet, 2020, 52:1412-1422.
doi: 10.1038/s41588-020-00722-w |
[14] |
Walkowiak S, Gao L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri J N, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo D H, Ens J, Wiebe K, N’Diaye A, Fritz A K, Gutwin C, Fiebig A, Fosker C, Fu B X, Accinelli G G, Gardner K A, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G, Hatakeyama M, Koh C S, Deek J, Costamagna A C, Fobert P, Heavens D, Kanamori H, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz U, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu J, Steuernagel B, Small I, Cloutier S, Keeble-Gagnere G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl P J, Sharpe A G, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger S G, Handa H, Shimizu K K, Distelfeld A, Chalmers K, Keller B, Mayer K, Poland J, Stein N, McCartney C A, Spannagl M, Wicker T, Pozniak C J. Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588:277-283.
doi: 10.1038/s41586-020-2961-x |
[15] |
Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant, 2020, 13:1733-1751.
doi: 10.1016/j.molp.2020.09.001 |
[16] |
Winfield M O, Allen A M, Burridge A J, Barker G L A, Benbow H R, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley A R, Edwards K J. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J, 2016, 14:1195-1206.
doi: 10.1111/pbi.12485 pmid: 26466852 |
[17] |
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18:1354-1360.
doi: 10.1111/pbi.v18.6 |
[18] |
Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney R K, He Z. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant, 2017, 10:1047-1064.
doi: S1674-2052(17)30174-0 pmid: 28669791 |
[19] |
Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129:1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516 |
[20] |
Lu J, Hou J, Ou-Yang Y, Luo H, Zhao J, Mao C, Han M, Wang L, Xiao J, Yang Y, Li X. A direct PCR-based SNP marker-assisted selection system (D-MAS) for different crops. Mol Breed, 2020, 40:9.
doi: 10.1007/s11032-019-1091-3 |
[21] |
Long L, Yao F, Guan F, Cheng Y K, Duan L, Zhao X, Li H, Pu Z, Li W, Jiang Q T, Wei Y, Ma J, Kang H, Dai S, Qi P, Xu Q, Deng M, Zheng Y L, Jiang Y, Chen G. A stable QTL on chromosome 5BL combined with Yr18 conferring high-level adult-plant resistance to stripe rust in Chinese wheat landrace Anyuehong. Phytopathology, 2021, doi: 10.1094/PHYTO-10-20-0465-R.
doi: 10.1094/PHYTO-10-20-0465-R |
[22] |
Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet, 2017, 130:2191-2201.
doi: 10.1007/s00122-017-2950-0 |
[23] |
Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet, 2018, 131:43-58.
doi: 10.1007/s00122-017-2984-3 |
[24] |
Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z. SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet, 2018, 131:1481-1496.
doi: 10.1007/s00122-018-3092-8 |
[25] | 吴秋红, 陈永兴, 李丹, 王振忠, 张艳, 袁成国, 王西成, 赵虹, 曹廷杰, 刘志勇. 利用SNP芯片和BSA分析规模化定位小麦抗白粉病基因. 作物学报, 2018, 44:1-14. |
Wu Q H, Chen Y X, Li D, Wang Z Z, Zhang Y, Yuan C G, Wang X C, Zhao H, Cao T J, Liu Z Y. Large scale detection of powdery mildew resistance genes in wheat via SNP and bulked segregate analysis. Acta Agron Sin, 2018, 44:1-14 (in Chinese with English abstract). | |
[26] |
Mu J, Wang Q, Wu J, Zeng Q, Huang S, Liu S, Yu S, Kang Z, Han D. Identification of sources of resistance in geographically diverse wheat accessions to stripe rust pathogen in China. Crop Prot, 2019, 122:1-8.
doi: 10.1016/j.cropro.2019.04.009 |
[27] | Van Ooijen J W. JoinMap4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma B V, Wageningen, the Netherlands, 2006. |
[28] |
Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93:77-78.
pmid: 12011185 |
[29] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001 |
[30] |
Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13:1694-1708.
doi: 10.1016/j.molp.2020.09.019 |
[31] |
Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics, 2012, 28:2685-2686.
doi: 10.1093/bioinformatics/bts507 |
[32] |
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res, 2019, 47:256-259.
doi: 10.1093/nar/gkz239 pmid: 30931475 |
[33] | 韩德俊, 张培禹, 王琪琳, 曾庆东, 吴建辉, 周新力, 王晓杰, 黄丽丽, 康振生. 1980份小麦地方品种和国外种质抗条锈性鉴定与评价. 中国农业科学, 2012, 45:5013-5023. |
Han D J, Zhang P Y, Wang Q L, Zeng Q D, Wu J H, Zhou X L, Wang X J, Huang L L, Kang Z S. Identification and evaluation of resistance to stripe rust in 1980 wheat landraces and abroad germplasm. Sci Agric Sin, 2012, 45:5013-5023 (in Chinese with English abstract). | |
[34] |
Li J, Dundas I, Dong C, Li G, Trethowan R, Yang Z, Hoxha S, Zhang P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2020, 133:1095-1107.
doi: 10.1007/s00122-020-03534-y |
[35] | Chen X M, Kang Z S. Stripe Rust. Springer Netherlands, 2017. |
[36] | 王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37:191-201. |
Wang J K, Li H H, Zhang X C, Yin C B, Li Y, Ma Y Z, Li X H, Qiu L J, Wan J M. Molecular design breeding in crops in China. Acta Agron Sin, 2011, 37:191-201 (in Chinese with English abstract). | |
[37] | 王建康, 李慧慧, 张鲁燕. 基因定位与育种设计. 北京: 科学出版社, 2014. |
Wang J K, Li H H, Zhang L Y. Gene Mapping and Design Breeding. Beijing: Science Press, 2014 (in Chinese with English abstract). | |
[38] | 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37:202-215. |
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37:202-215 (in Chinese with English abstract). | |
[39] | Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat(Triticum aestivum L.). G3: Genes Genom Genet, 2015, 5:449-465. |
[40] |
Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci, 2000, 40:1148-1155.
doi: 10.2135/cropsci2000.4041148x |
[41] |
Chhetri M, Bariana H, Kandiah P, Bansal U. Yr58: a new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance. Phytopathology, 2016, 106:1530-1534.
pmid: 27673348 |
[42] |
Zhang D, Zhu K, Dong L, Liang Y, Li G, Fang T, Guo G, Wu Q, Xie J, Chen Y, Lu P, Li M, Zhang H, Wang Z, Zhang Y, Sun Q, Liu Z. Wheat powdery mildew resistance gene Pm64 derived from wild emmer(Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J, 2019, 7:761-770.
doi: 10.1016/j.cj.2019.03.003 |
[43] |
He X, Brar G S, Bonnett D, Dreisigacker S, Hyles J, Spielmeyer W, Bhavani S, Singh R P, Singh P K. Disease resistance evaluation of elite CIMMYT wheat lines containing the coupled Fhb1 and Sr2 genes. Plant Dis, 2020, 104:2369-2376.
doi: 10.1094/PDIS-02-20-0369-RE |
[44] |
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14:1941-1955.
doi: 10.1111/pbi.2016.14.issue-10 |
[1] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[2] | Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840. |
[3] | XIAO Yong-Gui, LI Si-Min, LI Fa-Ji, ZHANG Hong-Yan, CHEN Xin-Min, WANG De-Sen, XIA Xian-Chun, HE Zhong-Hu. Genetic Analysis of Yield and Physiological Traits in Elite Parent Jing 411 and Its Derivatives under Two Fertilization Environments [J]. Acta Agron Sin, 2015, 41(09): 1333-1342. |
|