Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 791-800.doi: 10.3724/SP.J.1006.2022.14062
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Hao-Rang1(), ZHANG Yong2, YU Chun-Miao2, DONG Quan-Zhong, LI Wei-Wei1,3, HU Kai-Feng, ZHANG Ming-Ming2, XUE Hong, YANG Meng-Ping2, SONG Ji-Ling, WANG Lei2, YANG Xing-Yong, QIU Li-Juan2,*()
[1] |
Chen Z C, Wang L, Dai Y X, Wan X C, Liu S R. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation (or herbivory). Sci Rep, 2017, 7:10125-10135.
doi: 10.1038/s41598-017-00109-8 |
[2] |
Xiong L R, Du H, Zhang K Y, Lyu D, He H L, Pan J, Cai R, Wang G. A mutation in CsYL2.1 encoding a plastid isoform of triose phosphate isomerase leads to yellow leaf 2.1 (yl2.1) in cucumber (Cucumis sativus L.). Int J Mol Sci, 2020, 22:322-335.
doi: 10.3390/ijms22010322 |
[3] |
Wilson-Sanchez D, Rubio-Diaz S, Munoz-Viana R, Manuel Perez-Perez J, Jover-Gil S, Ponce M R, Micol J L. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J, 2014, 79:878-891.
doi: 10.1111/tpj.2014.79.issue-5 |
[4] |
Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. Plant Cell Physiol, 2012, 53:1154-1170.
doi: 10.1093/pcp/pcs043 pmid: 22470059 |
[5] |
Fromme P, Melkozernov A, Jordan P, Krauss N. Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett, 2003, 555:40-44.
pmid: 14630316 |
[6] |
Johnson M P. Correction: photosynthesis. Essays Biochem, 2016, 60:255-273.
doi: 10.1042/EBC20160016 |
[7] |
Sandhu D, Atkinson T, Noll A, Johnson C, Espinosa K, Boelter J, Abel S, Dhatt B K, Barta T, Singsaas E, Sepsenwol S, Goggi A S, Palmer R G. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function. Plant Sci, 2016, 252:76-87.
doi: 10.1016/j.plantsci.2016.07.006 |
[8] |
Xia Y, Li Z, Wang J W, Li Y H, Ren Y, Du J J, Song Q L, Ma S C, Song Y L, Zhao H Y, Yang Z Q, Zhang G S, Niu N. Isolation and identification of a TaTDR-like wheat gene encoding a bHLH domain protein, which negatively regulates chlorophyll biosynthesis in Arabidopsis. Int J Mol Sci, 2020, 21:629-642.
doi: 10.3390/ijms21020629 |
[9] |
South P F, Cavanagh A P, Liu H W, Ort D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363:45.
doi: 10.1126/science.aat9077 |
[10] |
Killough D T, Horlacher W R. The inheritance of virescent yellow and red plant colors in cotton. Genetics, 1933, 18:329-334.
doi: 10.1093/genetics/18.4.329 pmid: 17246695 |
[11] |
Granick S. Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J Biol Chem, 1948, 175:333-342.
doi: 10.1016/S0021-9258(18)57262-8 |
[12] |
Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev S I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynt Res, 2016, 130:251-266.
doi: 10.1007/s11120-016-0249-7 |
[13] |
Wu Z M, Zhang X, Wang J L, Wan J M. Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica, 2014, 52:217-222.
doi: 10.1007/s11099-014-0025-x |
[14] |
Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J, 1997, 12:527-535.
pmid: 9351240 |
[15] |
Zhang J Y, Sui C H, Liu H M, Chen J J, Han Z L, Yan Q, Liu S Y, Liu H Z. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco(Nicotiana tabacum L.). BMC Plant Biol, 2021, 21:45.
doi: 10.1186/s12870-020-02805-6 |
[16] | Robert A S, Brian M P, Maarten K, Peter H Q. Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol Gene Genet Mgg, 1988, 213:9-14. |
[17] |
Zhu Y, Yan P W, Dong S Q, Hu Z J, Wang Y, Yang J S, Xin X Y, Luo X J. Map-based cloning and characterization of YGL22, a new yellow-green leaf gene in rice (Oryza sativa). Crop Sci, 2021, 61:529-538.
doi: 10.1002/csc2.v61.1 |
[18] | Zhang K J, Li Y, Zhu W W, Wei Y F, Njogu M, Lou Q F, Li J, Chen J F. Fine mapping and transcriptome analysis of virescent leaf gene v-2 in cucumber (Cucumis sativus L.). Front Plant Sci, 2020, 11:1458-1470. |
[19] |
Qin D D, Dong J, Xu F C, Guo G G, Ge S T, Xu Q, Xu Y X, Li M F. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics, 2015, 16:838.
doi: 10.1186/s12864-015-2015-1 |
[20] | Li T C, Yang H Y, Lu Y, Dong Q, Liu G H, Chen F, Zhou Y B. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ, 2021, 9:e10567. |
[21] |
Liu M F, Wang Y Q, Nie Z X, Gai J Y, Bhat J A, Kong J J, Zhao T J. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr.]. Plant Mol Biol, 2020, 103:527-543.
doi: 10.1007/s11103-020-01008-9 |
[22] |
Sam R, Taylor A, Carly G, Katherine E, Sarah P, Alcira G, Reid P, Devinder S. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agronomy, 2014, 4:462-469.
doi: 10.3390/agronomy4040462 |
[23] | Campbell B W, Mani D, Curtin S J, Slattery R A, Michno J, Ort D R, Schaus P J, Palmer R G, Orf J H, Stupar R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3: Gen Genom Genet (Bethesda), 2014, 5:123-131. |
[24] |
Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome, 2004, 47:190-198.
pmid: 15060615 |
[25] |
Cai Z J, Steven R R, Richard M S. Regulation of photosynthesis in developing leaves of soybean chlorophyll-deficient mutants. Photosynth Res, 1997, 51:185-192.
doi: 10.1023/A:1005824706653 |
[26] | Palmer R G, Nelson R L, Bernard R L, Stelly D M. Genetics and linkage of three chlorophyll-deficient mutants in soybean: y19, y22, and y23. J Hered, 1990, 81:404-406. |
[27] | Yu J S. Genetic studies with Shennong 2015, a lethal yellow mutant (y21) in soybean. Hereditas, 1986, 8:13-15. |
[28] |
Wilcox J R, Probst A H. Inheritance of a chlorophyll-deficient character in soybeans. J Hered, 1969, 60:115-116.
doi: 10.1093/oxfordjournals.jhered.a107950 |
[29] |
Woodworth C M, Williams L F. Recent studies on the genetics of the soybeanl. Agron J, 1938, 30:125-129.
doi: 10.2134/agronj1938.00021962003000020006x |
[30] |
Probst A H. The Inheritance of leaf abscission and other characters in soybeans1. Agron J, 1950, 42:35-45.
doi: 10.2134/agronj1950.00021962004200010007x |
[31] | Wang M, Li W Z, Fang C, Xu F, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H R, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 50:1435-1441. |
[32] | 邱丽娟. 大豆种质资源描述规范和数据标准. 北京. 中国农业出版社, 2006. p 22. |
Qiu L J. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p22 (in Chinese). | |
[33] |
Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A, Schmutz J, Cregan P B. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17:33.
doi: 10.1186/s12864-015-2344-0 |
[34] |
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23:687-697.
doi: 10.1101/gr.146936.112 |
[35] |
Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci, 2010, 50:1950-1960.
doi: 10.2135/cropsci2009.10.0607 |
[36] | Richter A S, Banse C, Grimm B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife, 2019, 8:e46300. |
[37] |
Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57:805-818.
doi: 10.1007/s11103-005-2066-9 |
[38] |
Zhang H Y, Zhang D, Han S, Zhang X, Yu D Y. Identification and gene mapping of a soybean chlorophyll efficient mutant. Plant Breed, 2011, 130:133-138.
doi: 10.1111/pbr.2011.130.issue-2 |
[39] |
Eskins K, Banks D J. The relationship of accessory pigments to chlorophyll a content in chlorophyll-deficient peanut and soybean varieties. Photochem Photobiol, 2010, 30:585-588.
doi: 10.1111/php.1979.30.issue-5 |
[40] |
Palmer R G, Xu M. Positioning 3 qualitative trait loci on soybean molecular linkage group E. J Hered, 2008, 99:674-678.
doi: 10.1093/jhered/esn070 pmid: 18779225 |
[41] |
Terry M J, Ryberg M, Raitt C E, Page A M. Altered etioplast development in phytochrome chromophore-deficient mutants. Planta, 2001, 214:314-325.
pmid: 11800397 |
[42] | Millar A J, Kay S A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA, 1997, 93:15491-15496. |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[12] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[13] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[14] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[15] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
|