Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1169-1180.doi: 10.3724/SP.J.1006.2022.14058

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea

HUANG Wei1,2(), GAO Guo-Ying1(), WU Jin-Feng1,5, LIU Li-Li1,5, ZHANG Da-Wei1,5, ZHOU Ding-Gang1,5, CHENG Hong-Tao2, ZHANG Kai-Xuan3, ZHOU Mei-Liang3, LI Mei4, YAN Ming-Li1,4,5,*()   

  1. 1School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    2Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
    5Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan 411201, Hunan, China
  • Received:2021-04-11 Accepted:2021-07-12 Online:2022-05-12 Published:2021-08-05
  • Contact: YAN Ming-Li E-mail:2646213662@qq.com;1019982091@qq.com;ymljack@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100202);National Natural Science Foundation of China(31971980);Key Research and Development Program of Hunan(2020NK2045)

Abstract:

bHLH transcription factors TT8 can effectively regulate the biosynthesis of plant flavonoids. In this study, two copies of TT8 were obtained in Brassica juncea by homologous cloning method, and named BjA09.TT8 and BjB08.TT8, which encoded 521 and 517 amino acids, respectively. Interestedly, qRT-PCR showed that the relative expression levels of the two copies in leaves were significantly higher than those in stems and roots, both responded to jasmonic acid (JA) signal, and the relative expression levels of Bju.TT8 reached maximum after 50 µmol L-1methyl jasmonate treatment for 0.5 hour. Furthermore, we found that both Bj.TT8 can increase the contents of total flavonoids in hairy roots of purple leaf mustard and green leaf mustard cultiver Sichuan Yellow Seed by hairy root system overexpression assay. It promoted the expression of flavonoid synthesis Bj.CHS, indicating they acted as redundant function. Over expression of BjA09.TT8 and BjB08.TT8 of wild-type Arabidopsis and Arabidopsis tt8 mutant revealed that the leaf colour of overexpressed Arabidopsis plant turned purple. Moreover, the contents of total flavonoid and proanthocyanidins increased significantly. In summary, BjA09.TT8 and BjB08.TT8 genes could promote the synthesis of flavonoids in Brassica juncea, which provided a reference for further analysis of the regulatory mechanism of proanthocyanidin synthesis in Brassica.

Key words: Brassica juncea, TT8, regulate, flavonoid, proanthocyanidin

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
引物用途
Primer purpose
TT8-A-F ATGGATGAATTAAGTATTATACCG 基因克隆 Gene cloning
TT8-A-R CTAGAGTTTATTATTATATATGA
TT8-B-F ATGGATGAATCAAGTATTATACAG
TT8-B-R CTAGAGTTTATTTTGAGATATG
3301-TT8-A-NcoIF GGGGACTCTTGACCATGGTAATGGATGAATTAAGTATTATACCG TT8载体构建引物
3301-TT8-A-Eco91IR GAAATTCGAGCTGGTCACCCTAGAGTTTATTATTATATATGA TT8 vector primer
3301-TT8-B-NcoIF GGGGACTCTTGACCATGGTAATGGATGAATCAAGTATTATACAG
3301-TT8-B-Eco91IR GAAATTCGAGCTGGTCACCCTAGAGTTTATTTTGAGATATG
qRT-PCR-Actin7-F GCTGACCGTATGAGCAAAG qRT-PCR检测引物
qRT-PCR-Actin7-R AAGATGGATGGACCCGAC qRT-PCR detection primers
qRT-PCR-TT8-A-F ACCAAAAGCGGATGCGTAT
qRT-PCR-TT8-A-R TCTATACCCAGCTCCTTAAGTACCT
qRT-PCR-TT8-B-F GAAGCAACCAATAGTTTAGTAGATACACA
qRT-PCR-TT8-B-R CGATGATTGAACGTAAGAAGATGTGGA
qRT-PCR-PAL-F AGAGCTTTTGACCGGAGAGA
qRT-PCR-PAL-R TTAATCACTCTTAACATATAGGAATGGGAG
qRT-PCR-CHS-F TCTTCATATTGGACGAGATGAGGA
qRT-PCR-CHS-R GCGTTTCTGTTCAAACAGGAA
qRT-PCR-CHI-F CTTTGGAGCGACCATTAGAG
qRT-PCR-CHI-R AGACAAAGCTTAACAAGAGAGGT
qRT-PCR-F3’H-F TGATTGGGAATTAGCTGGAGGA
qRT-PCR-F3’H-R AGTTAAATTTTAACCCGACCCGA
qRT-PCR-F3H-F ATCTTGGAGGAGCCAATTACGT
qRT-PCR-F3H-R ACACAAGGAGTCTAAGCGATGA
qRT-PCR-FLS-F ACTAGGAATGTGATCGCACCA
qRT-PCR-FLS-R TCAGAGGGATTAGGTTTACGG
qRT-PCR-DFR-F TCTTTGGAACAGGTTTGAAGGA
qRT-PCR-DFR-R TAAAGTGACAGGGAGAAAACCCT
qRT-PCR-ANS-F AAGCCGTTGCCTGAGA
qRT-PCR-ANS-R AGAGTTTCAGACTCAGACTTCA
qRT-PCR-BAN-F GGTTTTTGTTGTTAGGGAAAGA
qRT-PCR-BAN-R ATATGCTTACTCTGACAAAACAT

Fig. 1

Secondary structure and three-dimensional structure prediction of BjA09.TT8 and BjB08.TT8 in purple leaf mustard A: secondary structure of BjA09.TT8 and BjB08.TT8 in purple leaf mustard; B: three-dimensional structure prediction of BjA09.TT8 and BjB08.TT8 in purple leaf mustard."

Fig. 2

Relative expression patterns of BjA09.TT8 and BjB08.TT8 in PM and SY A: expression analysis of BjA09.TT8 gene in PM; B: expression analysis of BjA09.TT8 gene in SY; C: expression analysis of BjB08.TT8 gene in PM; D: expression analysis of BjB08.TT8 gene in SY. PM: purple-leaf mustard rape; SY: Sichuan yellow seed. *, ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 3

Relative expression patterns of BjA09.TT8 and BjB08.TT8 gene induced by MeJA in purple-leaf mustard rape * indicates significant difference at the 0.05 probability level."

Fig. 4

Relative expression patterns of BjA09.TT8 and BjB08.TT8 gene in hairy roots of Brassica juncea A: relative expression of BjA09.TT8 gene in hairy roots of PM; B: relative expression of BjA09.TT8 gene in hairy roots of SY; C: relative expression of BjB08.TT8 gene in hairy roots of PM; D: relative expression of BjB08.TT8 gene in hairy roots of SY. A4: wild-type hairy roots; 3301: hairy roots transfected with pCAMBIA3301 empty vector; PTT8-A1-A3: transgenic PM hairy roots; PTT8-B1-B3: transgenic PM hairy roots; STT8-A1-A3: transgenic SY hairy rootsr; STT8-B1-B3: transgenic SY hairy roots; PM: purple-leaf mustard rape; SY: Sichuan yellow seed. Each set of data represents the mean ± SD of three biological replicates. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 5

Relative expression patterns of the key of enzyme genes in flavonoids metabolism pathway in transgenic with BjA09.TT8 and BjB08.TT8 gene hairy roots A: relative expression of the key of enzymes in flavonoids metabolism pathway in PM hairy roots from A4, pCAMBIA3301 and BjA09.TT8 roots were detected; B: relative expression of the key of enzyme genes of flavonoid metabolism pathway in SY hairy roots from A4, pCAMBIA3301 and BjA09.TT8 roots were detected; C: relative expression of the key of enzymes in flavonoids metabolism pathway in PM hairy roots from A4, pCAMBIA3301 and BjB08.TT8 roots were detected; D: relative expression of the key of enzyme genes of flavonoid metabolism pathway in SY hairy roots from A4, pCAMBIA3301 and BjB08.TT8 roots were detected. ACTIN7 was used as internal control. PM: purple-leaf mustard rape; SY: Sichuan Yellow seed. PAL: phenylalanine deaminase; CHS: chalcone synthase; CHI: chalcone isomerase; F3H: flavone 3-hydroxylase; F3’H: flavonoid 3’-hydroxylase; FLS: flavonol synthase; DFR: dihydroflavonol reductase; ANS: anthocyanin synthase; BAN: anthocyanin reductase. Error bars represent the standard deviation from three replicates. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 6

Detection of the total amount of flavonoids content in transgenic with BjA09.TT8 and BjB08.TT8 hairy roots A: measurement of the total amount of flavonoids content in PM hairy roots from A4, pCAMBIA3301 and BjA09.TT8; B: measurement of the total flavonoids content in SY hairy roots from A4, pCAMBIA3301 and BjA09.TT8; C: measurement of the total flavonoids content in PM hairy roots from A4, pCAMBIA3301 and BjB08.TT8; D: measurement of the total flavonoids content in SY hairy roots from A4, pCAMBIA3301 and BjB08.TT8; PM: purple-leaf mustard rape; SY: Sichuan yellow seed. Each set of data represents the mean ± SD of three biological replicates. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 7

Relative expression patterns of BjA09.TT8 and BjB08.TT8 in transgenic Arabidopsis leaves A: relative expression of transgenic with BjA09.TT8 Arabidopsis; B: relative expression of transgenic with BjB08.TT8 Arabidopsis. WT: wild-type Arabidopsis; 3301: transfer pCAMBIA3301 vector to Arabidopsis; TT8-A1-A3, TT8-B1-B3: transgenic positive lines. ** indicate significant difference at the 0.01 probability level."

Fig. 8

Detection of the total amount of flavonoids and proathocyanidins content in transgenic Arabidopsis A: measurement of the total amount of flavonoids content in Arabidopsis of WT, pCAMBIA3301 and BjA09TT8; B: measurement of the proathocyanidins content in Arabidopsis of WT, pCAMBIA3301 and BjB08TT8. TT8-A9, TT8-B8: transgenic positive lines. Each set of data represents the mean ± SD of three biological replicates. ** indicates significant difference at the 0.01 probability level."

Fig. 9

Phenotypic identification of transgenic Arabidopsis a: wild-type Arabidopsis plants; b: BjA09.TT8 gene Arabidopsis; c: BjB08.TT8 gene Arabidopsis."

Fig. 10

Detection of gene expression after overexpression of BjA09.TT8 and BjB08.TT8 in Arabidopsis tt8 WT: wild-type Arabidopsis; 3301: transfer pCAMBIA3301 vector to Arabidopsis; tt8-TT8-A1-A3: positive lines of BjA09.TT8 gene was replenished; tt8-TT8-B1-B3: positive lines of BjB08.TT8 gene was replenished. ** indicates significant difference at the 0.01 probability level."

Fig. 11

Detection of the total amount of flavonoids content and proathocyanidins content after overexpression of BjA09.TT8 and BjB08.TT8 in Arabidopsis tt8 A: measurement of the total amount of flavonoids content in replenish with BjA09.TT8 and BjB08.TT8 Arabidopsis tt8 mutant; B: measurement of the proathocyanidins content in replenish with BjA09.TT8 and BjB08.TT8 Arabidopsis tt8 mutant. TT8-A1-A3: positive lines of BjA09.TT8 gene was replenished; TT8-B1-B3: positive lines of BjB08.TT8 gene was replenished. Each set of data represents the mean ± SD of three biological replicates. ** indicates significant difference at the 0.01 probability level."

Fig. 12

Phenotypes of BjA09.TT8 and BjB08.TT8 overexpressed in Arabidopsis tt8 a: tt8 mutant Arabidopsis plants; b: Arabidopsis tt8 mutant of BjA09.TT8 gene was replenished; c: Arabidopsis tt8 mutant of BjB08.TT8 gene was replenished."

[1] Liu L L, Huang T, Ding S P, Wang Y, Yan M L. BANYULS genes from Brassica juncea and Brassica nigra: cloning, evolution and involvement in seed coat colour. J Agric Sci, 2017, 155:421-430.
doi: 10.1017/S0021859616000435
[2] Rauf A, Imran M, Abu-Izneid T, Patel S, Suleria R. Proanthocyanidins: a comprehensive review. Biomed Pharmacoth, 2019, 116:108999.
doi: 10.1016/j.biopha.2019.108999
[3] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径. 作物学报, 2020, 46:1322-1331.
doi: 10.3724/SP.J.1006.2020.04008
Gao G Y, Wu X F, Huang W, Zhou D G, Zhang D W, Zhou M L, Zhang K X, Yan M L. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea. Acta Agron Sin, 2020, 46:1322-1331 (in Chinese with English abstract).
[4] Sarmita J, Dipak P, Shweta P, Kapil U, Jaymesh T, Rahul M, Santasabuj D, Ranjitsinh D, Suresh Y. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. PLoS One, 2017, 12:e0182137.
[5] Zhang K X, Logacheva M D, Meng Y, Hu J P, Wan D P, Li L, Dagmar J, Wang Z Y, Georgiev M I, Yu Z, Yang F Y, Yan M L, Zhou M L. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. J Exp Bot, 2018, 69:1955-1966.
doi: 10.1093/jxb/ery032
[6] Xie Q, Hu Z, Zhang Y, Tian S, Chen G. Accumulation and molecular regulation of anthocyanin in purple tumorous stem mustard (Brassica juncea var. tumida Tsen et Lee). J Agric Food Chem, 2014, 62:7813-7821.
doi: 10.1021/jf501790a
[7] Liu X, Lu Y, Yan M, Sun D, Hu X, Liu S, Chen S, Guan C, Liu Z. Genome-wide identification, localization, and expression analysis of proanthocyanidin-associated genes in Brassica. Front Plant Sci, 2016, 7:1831.
[8] Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B, Jiao Y M, Zhang C F, Khan M H, Khan S U, Fan C C, Zhou Y M. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J, 2019, 18:1153-1168.
doi: 10.1111/pbi.v18.5
[9] Li X, Chen L, Hong M Y, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012, 7:e44145.
[10] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB). Theor Appl Genet, 2014, 127:339-347.
doi: 10.1007/s00122-013-2222-6
[11] 袁玉辉. 芥菜型油菜TT8干扰载体的构建及遗传转化. 湖南农业大学硕士学位论文, 湖南长沙, 2013.
Yuan Y H. The Construction of TT8 Interference Vector and Genetic Transformation of Brassica juncea (L.). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract).
[12] 刘显军. 芥菜型油菜黄籽基因克隆和黄籽形成机制分析. 湖南农业大学博士学位论文, 湖南长沙, 2013.
Liu X J. Positional Cloning of the Gene for Seed Color and Molecular Mechanism of Yellow Seed Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract).
[13] 岳迎春. 芥菜型油菜种皮颜色转录因子基因TT2遗传转化体系优化及种皮色素分析. 湖南农业大学硕士学位论文, 湖南长沙, 2010.
Yue Y C. Pigment Analysis of the Seed Coat Color Transcription Factor Gene TT2 Genetic Transformation System Optimization in Brassic juncea. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[14] Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y H, Yao P, Li X M, Xie K, Zhang J H, Wang J L, Liu F, Ma W W, Shopan J, Zheng H K, Mackenzie S A, Zhang M F. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet, 2016, 48:1225.
doi: 10.1038/ng.3657
[15] 王成龙. 苦荞毛状根的诱导及高频再生体系的建立. 四川农业大学硕士学位论文, 四川成都, 2015.
Wang C L. Induction of Tartary Buckwheat Hairy Roots and Establishment of High Frequency Regeneration System. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015 (in Chinese with English abstract).
[16] 李隆, 程成, 伍小方, 张大为, 刘丽莉, 周静, 周美亮, 张凯旋, 严明理. 芥菜型油菜毛状根诱导体系构建及TTG1基因功能初步研究. 作物学报, 2018, 44:1468-1476.
Li L, Cheng C, Wu X F, Zhang D W, Liu L L, Zhou J, Zhou M L, Zhang K X, Yan M L. Construction of hairy root induction system and functional analysis of TTG1 gene in Brassica juncea. Acta Agron Sin, 2018, 44:1380-1388 (in Chinese with English abstract).
[17] 范昱, 王红力, 何凤, 赖弟利, 王佳俊, 宋月, 向达兵. 后熟对苦荞子粒营养品质的影响. 作物杂志, 2018, (1):96-101.
Fan Y, Wang H L, He F, Lai D L, Wang J J, Song Y, Xiang D B. Nutritional quality in seeds of tartary buckwheat affected by after-ripening. Crops, 2018, (1):96-101 (in Chinese with English abstract).
[18] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16:735-743.
pmid: 10069079
[19] 蒋晓岚, 孟菲, 刘亚军, 万根文, 吴珂, 夏涛, 高丽萍. 茶树根原花青素提取工艺及检测方法的优化. 安徽农业大学学报, 2013, 40:891-898.
Jiang X L, Meng F, Liu Y J, Wan G W, Wu K, Xia T, Gao L P. Optimization of extraction technology and detection method on proanthocyanidins in tea root. J Anhui Agric Univ, 2013, 40:891-898 (in Chinese with English abstract).
[20] Pak H, Guo Y, Chen M X, Chen K M, Li Y L, Hua S J, Shamsi I, Meng H B, Shi C G, Jiang L X. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta, 2009, 231:79-91.
doi: 10.1007/s00425-009-1029-9
[21] Nardi C F, Villarreal N M, Opazo M C, Martínez G A, Moya-León M A, Civello P M. Expression of FaXTH1 and FaXTH2 genes in strawberry fruit cloning of promoter regions and effect of plant growth regulators. Sci Hortic, 2014, 165:111-122.
doi: 10.1016/j.scienta.2013.10.035
[22] Zhang L, Yang T, Li X Y, Hao H, Wang C. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue. Plant Physiol Biochem, 2014, 78:88-96.
doi: 10.1016/j.plaphy.2014.02.019
[23] Carvalhais L C, Schenk P M, Dennis P G. Jasmonic acid signalling and the plant holobiont. Curr Opin Microbiol, 2017, 37:42-47.
doi: S1369-5274(16)30200-4 pmid: 28437665
[24] Zhao C Y, Wang F, Lian Y H, Xiao H, Zheng J K. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr, 2020, 60:566-583.
doi: 10.1080/10408398.2018.1544885
[25] Nesi N, Debeaujon I, Jond C, Pelletier G, Lepiniec L. The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell, 2000, 12:1863-1878.
pmid: 11041882
[26] Zhang D W, Liu L L, Zhou D G, Liu X J, Liu Z S, Yan M L. Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea. J Integr Agric, 2020, 19:1250-1260.
doi: 10.1016/S2095-3119(20)63172-0
[27] 严明理, 刘显军, 刘忠松, 官春云, 袁谋志, 熊兴华. 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析. 作物学报, 2008, 34:1-7.
doi: 10.3724/SP.J.1006.2008.00001
Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H. Cloning and expression analysis of the dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin, 2008, 34:1-7 (in Chinese with English abstract).
[28] Yan M L, Liu X J, Guan C Y, Chen X B, Liu Z S. Cloning and expression analysis of an anthocyanidin synthase gene homolog from Brassica juncea. Mol Breed, 2011, 28:313-322.
doi: 10.1007/s11032-010-9483-4
[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[3] QIU Hong-Mei, CHEN Liang, HOU Yun-Long, WANG Xin-Feng, CHEN Jian, MA Xiao-Ping, CUI Zheng-Guo, ZHANG Ling, HU Jin-Hai, WANG Yue-Qiang, QIU Li-Juan. Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max) [J]. Acta Agronomica Sinica, 2021, 47(12): 2299-2313.
[4] GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331.
[5] WANG Yan-Hua, JIAN Hong-Jiu, QIU Xiao, LI Jia-Na. Regulatory mechanism of the seed coat color gene BrTT1 in Brassica rapa L. [J]. Acta Agronomica Sinica, 2020, 46(11): 1678-1689.
[6] Long LI,Cheng CHENG,Xiao-Fang WU,Da-Wei ZHANG,Li-Li LIU,Jing ZHOU,Mei-Liang ZHOU,Kai-Xuan ZHANG,Ming-Li YAN. Construction of Hairy Root Induction System and Functional Analysis of TTG1 Gene in Brassica juncea [J]. Acta Agronomica Sinica, 2018, 44(10): 1468-1476.
[7] HUANG Qi-Xiu,QU Yan-Ying,YAO Zheng-Pei,LI Meng-Yu,CHEN Quan-Jia*. Correlation between Resistance to Fusarium Wilt and Expression of Flavonoid Metabolism Related Genes in Gossypium barbadense L. [J]. Acta Agron Sin, 2017, 43(12): 1791-1801.
[8] DU Hai, RAN Feng,MA Shan-Shan,KE Yun-Zhuo,SUN Li-Ping,LI Jia-Na,TANG Yi-Xiong. Regulating Effects of GmMYB042 Gene on Flavonoid Biosynthesis [J]. Acta Agron Sin, 2016, 42(01): 1-10.
[9] HE Hai-Wang,PAN Hua-Qing,ZHANG Nao-Dan,HE Long-Fei*. Chromolaena odorata Flavonoid 3’-hydroxylase Gene Cloning and Its Expression in Tobacco [J]. Acta Agron Sin, 2015, 41(03): 479-486.
[10] QU Cun-Min,LU Kun,LIU Shui-Yan,BU Hai-Dong,FU Fu-You,WANG Rui,XU Xin-Fu,LI Jia-Na. SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1914-1924.
[11] YI Jin-Xin, XU Zhao-Long, WANG Jun-Feng, ZHANG Da-Yong, HE Xiao-Lan, ZULFIQAR Ali, ZHU Hong-Run, MA Hong-Xiang, SANGEETA Dhaubhade. GmCHS8 and GmIFS2 Gene Co-Determine Accumulation of Isoflavonoid in Soybean [J]. Acta Agron Sin, 2011, 37(04): 571-578.
[12] ZONG Xue-Feng; ZHANG Jian-Kui;LI Bang-Xiu; YU Guo-Dong;SHI You-Ming and WANG San-Gen. Relationship between Antioxidation and Grain Colors of Wheat (Triticum aestivum L.) [J]. Acta Agron Sin, 2006, 32(02): 237-242.
[13] ZHAO Xiang-Qian; WANG Xue-De. Composition Analysis of Pigment in Colored Cotton Fiber [J]. Acta Agron Sin, 2005, 31(04): 456-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!