Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1558-1565.doi: 10.3724/SP.J.1006.2022.14093

• RESEARCH NOTES • Previous Articles    

Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores

LI Hai-Fen(), WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang*()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Science / Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
  • Received:2021-05-18 Accepted:2021-09-10 Online:2022-06-12 Published:2021-10-12
  • Contact: LIANG Xuan-Qiang E-mail:lihaifen@gdaas.cn;liangxuanqiang@gdaas.cn
  • Supported by:
    Key-Area Research and Development Program of Guangdong Province(2020B020219003);China Agriculture Research System of the Ministry of Finance and Ministry of Agriculture and Rural Affairs, and the Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Science(202104TD)

Abstract:

Peanut is a plant that blooms above ground and bears fruit underground. In our earlier studies, the voltage dependent anion channel (AhVDAC) gene was detected to be involved in gravitropism of peanut gynophores. In this study, the full-length cDNA of peanut AhVDAC gene was cloned, and the prokaryotic expression, subcellular localization, and the relative expression level of AhVDAC gene in gravitropism were analyzed. The results showed that the open reading frame of AhVDAC gene was 831 bp encoding a protein containing 276 amino acids, with a molecular weight of 29.7 kD and pI 6.38. Subcellular localization showed that AhVDAC gene was mainly located in cytoplasm. The prokaryotic expression vector pPROEXHTa-AhVDAC was constructed, and the 37 kD AhVDAC protein was induced, isolated, and purified. The relative expression level of AhVDAC in gynophores at different developmental days was analyzed by RT-PCR, and the results showed that the relative expression level of AhVDAC gene was the highest at the 2nd day, and then decreased gradually and maintained at a lower level. The application of exogenous CaCl2 and LaCl3 to peanut gynophores in vitro revealed that CaCl2 treatment could significantly promote the relative expression of AhVDAC gene and the geotropic bending of gynophores, whereas LaCl3 treatment could decelerate the relative expression of AhVDAC gene and geotropic bending of gynophores. In conclusion, we speculated that Ca2+ accumulation may promote the expression of AhVDAC and Ca2+was asymmetrically distributed through the transport of AhVDAC on biological membrane, so that the growth direction of peanut gynophore was changed and geotropic bending occurs.

Key words: peanut, gynophore, the voltage dependent anion channel gene (AhVDAC), clone, gene expression

Table 1

Primers used for this study"

引物用途
Primer function
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
基因克隆
Gene cloning
AhVDAC-F ATGGTGAATGGTCCAGGTCTCTACT
AhVDAC-R CTAAGGCTTCAAGGCCACGG
亚细胞定位
Subcellular localization
VDAC-M3 CGGGATCCATGGTGAATGGTCCAGGTCTC
VDAC-M4 AACTGCAGAGGCTTCAAGGCCACGG
原核表达载体构建
Construction of prokaryotic expression vector
VDAC-M1 AACTGCAGTGGTGAATGGTCCAGGTCTCTACT
VDAC-M2 CCCAAGCTTCTA AGGCTTCAAGGCCACGG
荧光定量
Fluorescence quantitative PCR
AhVDAC-qF GTAAGCCCGTTGACAAACACTG
AhVDAC-qR CACCAATGTTAGGGGGTCAAG
内参引物
Reference gene primer
18S rRNA-F CAGCTCGCGTTGACTACG
18S rRNA-R CGAACACTTCACCGGACCAT

Fig. 1

cDNA sequence of AhVDAC gene and amino acids sequence (A), secondary structure (B), and three-dimensional structure (C) prediction of VDAC protein"

Fig. 2

Phylogenetic tree analysis of AhVDAC and VDAC from other plants The small red star in the figure represents the VDAC protein in the model plant Arabidopsis thaliana, and the small red dot represents the VDAC protein in peanut that is 100% similar to the gene cloned in this study."

Fig. 3

Subcelluar localization of the AhVDAC in nion epidermal cells A: blank control; B: the localization of pCAMBIA1301-CaMV35S-GFP; C: the localization of pCAMBIA1301-CaMV35S-AhVDAC-GFP."

Fig. 4

Identification of the pPROEX HTa-AhVDAC in BL21(DE3)pLysS by recombination plasmid PCR and Bacilli PCR and restriction digestion from recombination plasmid A: identification of recombination plasmid PCR; B: identification of Bacilli PCR; C: the restriction digestion by Pst I and Hind III. M: DNA marker DL2000; M1: DNA marker Hind IIIλ; M2: DNA marker DL2000."

Fig. 5

SDS-PAGE analysis of AhVDAC and protein purification 1: non-induced protein of BL21(DE3)pLysS with pPROEXHTa-AhVDAC; 2-7: induced protein of BL21(DE3)pLysS with pPROEX HTa-AhVDAC from 1 to 6 hours; M: protein molecular mass marker. B: purification the induced protein of BL21(DE3)pLysS with pPROEX HTa-AhVDAC at 6 h."

Fig. 6

Expression level of AhVDAC in different development stages of peanut gynophore Values with different lowercase letters show significant difference among different stages at the 0.05 probability level."

Fig. 7

Bending angle (A) and expression level (B) of AhVDAC in the peanut gynophores under the CaCl2 and LaCl3 treatments"

[1] Li H F, Zhu F H, Li H Y, Zhu W, Chen X P, Hong Y B, Liu H Y, Hong W, Liang X Q. Proteomic identification of gravitropic response genes in peanut gynophores. J Proteomics, 2013, 93: 303-313.
doi: 10.1016/j.jprot.2013.08.006
[2] Takahashi Y, Tateda C. The functions of voltage-dependent anion channels in plants. Apoptosis, 2013, 18: 917-924.
doi: 10.1007/s10495-013-0845-3
[3] Yan J P, He H, Tong S B, Zhang W R, Wang J M, Li X F, Yang Y. Voltage-dependent anion channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in aba-mediated early seedling development. Int J Mol Sci, 2009, 10: 2476-2486.
doi: 10.3390/ijms10062476
[4] Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage- dependent anion channel in Arabidopsis. J Exp Bot, 2011, 62: 4773-4785.
doi: 10.1093/jxb/err113 pmid: 21705391
[5] Wandrey M, Trevaskis B, Brewin N, Udvardi M K. Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiol, 2004, 134: 182-193.
pmid: 14657408
[6] Smack D P, Colombini M. Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol, 1985, 79: 1094-1097.
doi: 10.1104/pp.79.4.1094 pmid: 16664537
[7] Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van B J, Jacobs M, Homble F. Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. Biochim Biophys Acta, 2003, 1625: 43-51.
[8] Heins L, Mentzel H, Schmid A, Benz R, Schmitz U K. Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem, 1994, 269: 26402-26410.
pmid: 7929361
[9] Elkeles A, Breiman A, Zizi M. Functional differences among wheat voltage-dependent anion channel (VDAC) isoforms expressed in yeast. Indication for the presence of a novel VDAC-modulating protein? J Biol Chem, 1997, 272: 6252-6260.
doi: 10.1074/jbc.272.10.6252 pmid: 9045642
[10] Elkeles A, Devos K M, Graur D, Zizi M, Breiman A. Multiple cDNAs of wheat voltage-dependent anion channels (VDAC): isolation, differential expression, mapping and evolution. Plant Mol Biol, 1995, 29: 109-124.
pmid: 7579156
[11] Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol, 1997, 157: 271-279.
doi: 10.1007/s002329900235
[12] Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999, 399: 483-487.
doi: 10.1038/20959
[13] 田绍泽, 刘思禹, 王坤, 殷倩, 岳远征, 胡惠蓉. 植物线粒体电压依赖性阴离子通道蛋白VDAC综述. 分子植物育种, 2019, 17: 7401-7407.
Tian S Z, Liu S Y, Wang K, Yin Q, Yue Y Z, Hu H R. The review of voltage-dependent anion channels VDACs in plants. Mol Plant Breed, 2019, 17: 7401-7407 (in Chinese with English abstract).
[14] Szabadkai G, Bianchi K, Várnai P, Stefani D D, Wieckowski M R, Cavagna D, Nagy A I, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol, 2006, 175: 901-911.
pmid: 17178908
[15] Shoshan-Barmatz V, Pinto V D, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med, 2010, 31: 227-285.
doi: 10.1016/j.mam.2010.03.002 pmid: 20346371
[16] Hepler P. Tip growth in pollen tubes: calcium leads the way. Trends Plant Sci, 1997, 2: 79-80.
doi: 10.1016/S1360-1385(97)88385-9
[17] Malho R, Read N D, Trewavas A J, Pais M S. Calcium channel activity during pollen tube growth and reorientation. Plant Cell, 1995, 7: 1173-1184.
doi: 10.2307/3870093
[18] Young M J, Bay D C, Hausner G, Court D A. The evolutionary history of mitochondrial porins. BMC Evol Biol, 2007, 7: 31.
doi: 10.1186/1471-2148-7-31
[19] Gincel D, Vardi N, Shoshan-Barmatz V. Retinal voltage- dependent anion channel: characterization and cellular localization. Invest Ophthalmol Vis Sci, 2002, 43: 2097-2104.
[20] Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys, 2003, 39: 279-292.
pmid: 14716081
[21] Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J. Voltage-dependent anion channel transports calcium ions through biomimetic membranes. Langmuir, 2007, 23: 3898-3905.
doi: 10.1021/la063105+
[22] Tan W, Colombini M. VDAC closure increases calcium ion flux. Biochim Biophys Acta, 2007, 1768: 2510-2515.
[23] Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion- selective channel (VDAC). J Biol Chem, 2006, 281: 17347-17358.
doi: 10.1074/jbc.M600906200
[24] Kordyum E L. Calcium signaling in plant cells in altered gravity. Adv Space Res, 2003, 32: 1621-1630.
doi: 10.1016/S0273-1177(03)90403-0 pmid: 15002419
[25] Sinclair W, Trewavas A J. Calcium in gravitropism. A re-examination. Planta, 1997, 203: S85-S90.
doi: 10.1007/pl00008120 pmid: 11540333
[26] Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1: 428-433.
pmid: 10066614
[27] Shoshan-Barmatz V, Israelson A. The voltage-dependent anion channel in endoplasmic/ sarcoplasmic reticulum: characterization, modulation and possible function. J Membr Biol, 2004, 204: 57-66.
doi: 10.1007/s00232-005-0749-4
[28] Sabirov R Z, Okada Y. The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci, 2009, 59: 3-21.
doi: 10.1007/s12576-008-0008-4
[29] Zhou L M, Lan W Z, Jiang Y Q, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates A calcium channel to regulate pollen tube growth. Mol Plant, 2014, 7: 369-376.
doi: 10.1093/mp/sst125
[30] Messerli M, Robinson K R. Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci, 1997, 110: 1269-1278.
doi: 10.1242/jcs.110.11.1269
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[3] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[7] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[8] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[9] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[10] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[11] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[12] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[13] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[14] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[15] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!