Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1884-1893.doi: 10.3724/SP.J.1006.2022.14140

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population

LIU Cheng(), ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin*(), GAI Jun-Yi*()   

  1. Soybean Research Institute / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General) of Ministry of Agriculture and Rural Affairs / National Key Laboratory of Crop Genetics and Germplasm Enhancement / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2021-08-06 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-17
  • Contact: WANG Wu-Bin,GAI Jun-Yi E-mail:wildsoybean@163.com;soybeanwang@163.com;sri@njau.edu.cn
  • Supported by:
    Jiangsu Agriculture Science and Technology(CX(20)2007);Fundamental Research Funds for the Central Universities(KYZ202103);National Natural Science Foundation of China(31601325);MOE Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT_17R55);China Agriculture Research System(CARS-04)

Abstract:

Annual wild soybean is the ancestor of cultivated soybean. The 100-seed weight gradually increases in the long-term domestication process. Clarifying the genetic basis of this change is of great significance to the evolutionary research and variety improvement of soybean. In order to analyze the genetic basis of 100-seed weight during soybean domestication, a wild soybean chromosome segment substitution line population (SojaCSSLP5) composed of 177 whole-genome resequencing lines were used in this study. 13 QTLs/segments of 100-seed weight were detected by phenotypic evaluation in three different environments. All of 13 wild chromosome segments had the additive effect of reducing 100-seed weight, ranging from -0.49 g to -1.19 g, which was consistent with the smaller 100-seed weight of wild soybeans. These detected domesticated segments from 11 chromosomes explained 76.70% of the phenotypic variation, and the phenotypic contribution rate of a single segment ranged from 2.45% to 15.14%. The contribution rate of segments Gm03_LDB_15 and Gm12_LDB_46 exceeded 10%, which were major influence on the evolution of 100-seed weight of wild soybeans. Combined the transcriptome data and genome data of parental cultivated soybean Nannong 1138-2 and wild soybean N24852, a total of 13 candidate genes were predicted in these segments, and were involved in the pathways of plant seed size, including ubiquitin protein kinase regulatory pathway, G protein signal pathway, mitogen-activated protein kinase pathway, plant hormone pathway, transcription regulator pathway, and IKU (HAIKU) pathway. Compared with previous QTLs mapping results with cultivated soybeans, 4 of the 13 QTLs/segments were newly detected in this study, indicating that 9 wild chromosome segments might be passed to cultivated soybeans during domestication, and the corresponding cultivated segments of these 4 wild segments may be unique evolutionary segments of cultivated soybean.

Key words: wild soybean, chromosome segment substitution line, 100-seed weight, QTLs

Table 1

The frequency distribution of 100-seed weight of the SojaCSSLP5 and its parents"

环境
Environment
亲本 Parents 染色体片段代换系群体 Chromosome segment substitution line population (SojaCSSLP5)
南农1138-2
Nannong 1138-2
N24852 组中值Class mid-value (g) 变幅
Range
均值
Mean
变异系数
CV (%)
遗传率
h2 (%)
10 11 12 13 14 15 16 17 18 19 20 21 Σ
2016JP 18.07 1.84 1 3 4 9 30 43 47 31 7 2 0 0 177 10.49-18.85 15.34 6.45 84.2
2017JP 19.22 1.79 2 2 4 8 21 30 40 36 24 8 1 1 177 10.00-21.18 15.91 6.52 89.0
2018DT 19.56 1.74 0 0 2 2 12 16 26 36 40 34 8 1 177 12.10-20.78 17.14 6.08 86.6
平均Mean 18.95 1.73 0 1 3 6 12 28 46 54 23 4 0 0 177 11.15-18.96 16.14 6.36 91.8

Table 2

Joint ANOVA of 100-seed weight of the SojaCSSLP5 under multiple environments"

变异来源
Source of variation
自由度
DF
均方
MS
F
F-value
P
环境 Environment 2 417.90 398.00 <0.0001
环境内重复 Repeat (Environment) 6 8.03 7.65 <0.0001
家系 Line 176 29.31 12.06 <0.0001
家系×环境Line×Environment 356 2.43 2.31 <0.0001
误差 Error 1007 1.05
总和 Total 1549

Table 3

QTL/segment related to 100-seed weight detected in the SojaCSSLP5"

QTL 连锁标记
Marker
染色体区间
Genome region
区间大小
Size of region (Mb)
显著性
LOD
贡献率
PVE
(%)
加性效应
Add
已报道QTL
Reported QTL
qSW2.1 Gm02_LDB_27 12586195-13747176 1.16 9.11 6.97 -0.77 Seed weight 49-8[32]
qSW3.1 Gm03_LDB_15 12466486-13017335 0.55 17.63 15.14 -1.19 新位点New
qSW4.1 Gm04_LDB_13 2601664-2650056 0.05 5.62 4.10 -0.62 Seed weight 47-3[33]
qSW4.2 Gm04_LDB_25 6482923-6818956 0.34 6.22 4.58 -0.58 Seed weight 54-1[34]
Seed weight 47-3[33]
qSW4.3 Gm04_LDB_39 12291313-15488343 3.20 4.30 3.09 -0.57 Seed weight 50-9[6]
Seed weight 47-3[33]
qSW6.1 Gm06_LDB_34 11933129-12135714 0.20 5.11 3.71 -0.49 新位点New
qSW9.1 Gm09_LDB_54 41753666-41795135 0.04 9.10 6.96 -0.59 Seed weight 27-3[33]
qSW11.1 Gm11_LDB_21 4680921-4726090 0.05 8.95 6.83 -0.77 Seed weight 37-9[35]
qSW12.1 Gm12_LDB_46 37389148-37916269 0.53 12.59 10.10 -1.08 新位点New
qSW13.1 Gm13_LDB_27 28160461-28502188 0.34 6.96 5.17 -0.67 Seed weight 50-7[6]
Seed weight 19-2[36]
Seed weight 15-3[37]
Seed weight 49-14[32]
Seed weight 2-4[38]
qSW16.1 Gm16_LDB_38 8724531-9795523 1.07 5.31 3.86 -0.67 新位点New
qSW18.1 Gm18_LDB_24 43990050-47921961 3.93 3.45 2.45 -0.50 Seed weight 27-1[33]
qSW19.1 Gm19_LDB_3 223110-353922 0.13 5.16 3.74 -0.49 Seed weight 3-6[33]

Fig. 1

QTL-allele matrix of 100-seed weight of the SojaCSSLP5 In the CSSL column, the first and second column are the parents of Nannong 1138-2 and N24852, respectively. A black cell indicates a negative allele from the wild parent and a white cell indicates a positive allele from the cultivated parent, and their effect values can be found in Table 3. The CSSLs on the left of red line were significantly different from Nannong 1138-2 in 100-seed weight."

Table 4

Predicted candidate genes for 100-seed weight based on their sequence and expression differences between Nannong 1138-2 and N24852"

基因
Gene
片段
QTL
基因功能
Function
亲本
Parents
变异碱基
SNP variant
差异表达
Expression difference (FPKM)
14 seed 21 seed 28 seed 35 seed Leaf
Glyma.02G125200 qSW2.1 bHLH转录因子[39]
bHLH transcription factor[39]
南农1138-2
Nannong 1138-2
TCGG 0.45 0.40 2.19 5.37 2.57
N24852 CAAT 13.79 6.11 8.71 21.03 91.63
Glyma.03G066200 qSW3.1 ABA受体调节因子(IKU)
Regulatory components of ABA receptor (IKU)
南农1138-2
Nannong 1138-2
GA 1.25 0.63 3.91 10.63 0.69
N24852 AG 3.16 1.39 3.48 20.33 2.93
Glyma.04G080800 qSW4.1 RNA聚合酶I相关因子
RNA polymerase I-associated factor
南农1138-2
Nannong 1138-2
G 48.56 53.32 13.06 16.68 16.63
N24852 C 39.16 18.85 35.88 108.75 14.82
Glyma.04G078900 qSW4.2 裂原活化蛋白激酶
Mitogen-activated protein
kinase
南农1138-2
Nannong 1138-2
G 0.80 0.42 2.21 2.27 0.93
N24852 C 11.43 5.44 5.54 9.74 7.88
Glyma.04G116700 qSW4.3 对生长素的反应
Response to auxin
南农1138-2
Nannong 1138-2
AACACGC 1.11 0.71 3.82 7.24 1.01
N24852 CGTCGAT 10.27 5.20 17.85 45.44 10.32
Glyma.06G146700 qSW6.1 调节发育的G蛋白[40]
G protein that regulates
development[40]
南农1138-2
Nannong 1138-2
TTCTTTC 0.41 0.68 2.28 4.90 0.77
N24852 CCTACCA 11.03 11.03 17.77 41.99 11.34
Glyma.09G194200 qSW9.1 丝氨酸/苏氨酸磷酸酶
Serine/threonine phosphatase
南农1138-2
Nannong 1138-2
CCCCTTCTCT 1.44 0.39 0.80 0.50 1.26
N24852 TTATCATAGC 19.75 6.88 9.99 4.78 11.35
基因
Gene
片段
QTL
基因功能
Function
亲本
Parents
变异碱基
SNP variant
差异表达
Expression difference (FPKM)
14 seed 21 seed 28 seed 35 seed Leaf
Glyma.11G063500 qSW11.1 E3泛素连接酶[41-43]
E3 ubiquitin ligase[41-43]
南农1138-2
Nannong 1138-2
C 0.31 1.42 1.93 3.45 0.78
N24852 G 6.33 8.77 6.09 17.65 7.58
Glyma.12G216100 qSW12.1 GRAS类转录因子
GRAS transcription factors
南农1138-2
Nannong 1138-2
TCG 1.49 1.84 12.80 30.95 1.17
N24852 GGA 1.61 2.14 20.70 73.39 1.99
Glyma.13G167900 qSW13.1 核糖体生物合成蛋白
Ribosomal biosynthetic
protein
南农1138-2
Nannong 1138-2
AGG 28.37 39.78 17.86 19.92 22.40
N24852 GAA 33.04 12.85 39.50 104.52 15.60
Glyma.16G084300 qSW16.1 生长素响应因子
Auxin response factor
南农1138-2
Nannong 1138-2
G 0.31 0.46 0.88 0.11 3.24
N24852 C 30.59 10.86 3.63 0.44 39.27
Glyma.18G200100 qSW18.1 E3泛素连接酶
E3 ubiquitin ligase
南农1138-2
Nannong 1138-2
GTATTAC 0.59 1.41 1.15 0.92 1.45
N24852 ACCCCGT 2.80 3.46 5.14 2.68 4.40
Glyma.19G004200 qSW19.1 亲环蛋白
Cyclophilin
南农1138-2
Nannong 1138-2
TGCACG 14.24 9.18 8.69 5.45 4.90
N24852 AAAGTT 8.19 5.47 17.04 34.60 7.26
[1] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-416.
doi: 10.1038/nbt.3096
[2] Wang M, Li W Z, Fang C, Xu F, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H R, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[3] Liu B H, Watanabe S, Uchiyama T, Kong F J, Kanazawa A, Xia Z J, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607
[4] Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y, Zhang X, Swarm S A, Zhou L, Zhang Z J, Nelson R L, Ma J. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet, 2015, 47: 939-943.
doi: 10.1038/ng.3339
[5] Han Y P, Li D M, Zhu D, Li H Y, Li X P, Teng W L, Li W B. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x
[6] Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang T Y, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0
[7] Xin D W, Qi Z M, Jiang H W, Hu Z B, Zhu R S, Hu J H, Han H Y, Hu G H, Liu C Y, Chen Q S. QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS One, 2016, 11: e0149380.
doi: 10.1371/journal.pone.0149380
[8] Liu D Q, Yan Y L, Fujita Y, Xu D H. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127
[9] Wu D P, Zhan Y H, Sun Q X, Xu L X, Lian M, Zhao X, Han Y P, Li W B. Identification of quantitative trait loci underlying soybean (Glycine max [L.] Merr.) seed weight including main, epistatic and QTL × environment effects in different regions of Northeast China. Plant Breed, 2018, 137: 194-202.
doi: 10.1111/pbr.12574
[10] Li Y H, Reif J C, Hong H L, Li H H, Liu Z X, Ma Y S, Li J, Tian Y, Li Y F, Li W B, Qiu L J. Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Sci, 2018, 266: 95-101.
doi: 10.1016/j.plantsci.2017.04.013
[11] Li D M, Zhao X, Han Y P, Li W B, Xie F T. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics, 2019, 111: 90-95.
doi: 10.1016/j.ygeno.2018.01.004
[12] Zhang Y H, He J B, Wang Y F, Xing G N, Zhao J M, Li Y, Yang S P, Palmer R G, Zhao T J, Gai J Y. Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot, 2015, 66: 6311-6325.
doi: 10.1093/jxb/erv342
[13] He J B, Meng S, Zhao T J, Xing G N, Yang S P, Li Y, Guan R Z, Lu J J, Wang Y F, Xia Q J, Yang B, Gai J Y. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017, 130: 2327-2343.
doi: 10.1007/s00122-017-2962-9
[14] Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48: 571-581.
doi: 10.2135/cropsci2007.06.0361
[15] Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot, 2007, 100: 1027-1038.
doi: 10.1093/aob/mcm149
[16] Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574-579.
doi: 10.1007/BF00417950 pmid: 24162350
[17] Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci, 2000, 40: 1438-1444.
doi: 10.2135/cropsci2000.4051438x
[18] Wang W B, He Q Y, Yang H Y, Xiang S H, Xing G N, Zhao T J, Gai J Y. Identification of QTL/segments related to seed-quality traits in G. soja using chromosome segment substitution lines. Plant Genet Resour, 2014, 12: S65-S69.
[19] Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom, 2011, 33: 685-692.
doi: 10.1007/s13258-011-0043-z
[20] Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Gai J Y. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica, 2013, 189: 293-307.
doi: 10.1007/s10681-012-0817-7
[21] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
doi: 10.1186/1471-2164-15-433
[22] Li G Q, Wang Y, Chen M S, Edae E, Poland J, Akhunov E, Chao S M, Bai G H, Carver B F, Yan L L. Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genomics, 2015, 16: 108.
doi: 10.1186/s12864-015-1297-7
[23] Wu X L, Ren C W, Joshi T, Vuong T, Xu D, Nguyen H T. SNP discovery by high-throughput sequencing in soybean. BMC Genomics, 2010, 11: 469.
doi: 10.1186/1471-2164-11-469
[24] Xu X Y, Zeng L, Tao Y, Vuong T, Wan J R, Boerma R, Noe J, Li Z L, Finnerty S, Pathan S M, Shannon J G, Nguyen H T. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110
[25] Liu C, Chen X L, Wang W B, Hu X Y, Han W, He Q Y, Yang H Y, Xiang S H, Gai J Y. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int J Mol Sci, 2021, 22: 1559-1580.
doi: 10.3390/ijms22041559
[26] Li Y H, Zheng L Y, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana Gene Dev, 2008, 22: 1331-1336.
doi: 10.1101/gad.463608
[27] Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284
[28] Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
pmid: 16339187
[29] Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003, 131: 1661-1670.
doi: 10.1104/pp.102.018762
[30] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[31] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[32] Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity, 2009, 102: 372-380.
doi: 10.1038/hdy.2008.108 pmid: 18971958
[33] Vieira A J D, Oliveira D A D, Soares T C B, Schuster L, Piovesan N D, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290.
doi: 10.1590/S1677-04202006000200004
[34] Hacisalihoglu G, Burton A L, Gustin J L, Eker S, Asikli S, Heybet E H, Ozturk L, Cakmak I, Yazici A, Burkey K O, Orf J, Settles A M. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. J Integr Plant Biol, 2018, 60: 232-241.
doi: 10.1111/jipb.12612
[35] Sun Y N, Pan J B, Shi X L, Du X Y, Wu Q, Qi Z M, Jiang H W, Xin D W, Liu C Y, Hu G H, Chen Q S. Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep, 2012, 39: 9435-9443.
doi: 10.1007/s11033-012-1808-4
[36] Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet, 2005, 111: 851-861.
pmid: 16059730
[37] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
pmid: 15221142
[38] Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[39] Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shang-Guan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A H, Wang Z Q, Sang T, Wang Z X, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013, 25: 3360-3376.
doi: 10.1105/tpc.113.113589
[40] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ou-Yang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y
[41] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[42] Dong H, Dumenil J, Lu F H, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y H, Bevan M W. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Gene Dev, 2017, 31: 197-208.
doi: 10.1101/gad.292235.116 pmid: 28167503
[43] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
doi: 10.1007/s00122-010-1437-z
[44] Zhao B, Dai A, Wei H, Wang B, Jiang N, Feng X. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol, 2016, 90: 33-47.
doi: 10.1007/s11103-015-0392-0
[45] Tang X F, Su T, Han M, Wei L, Wang W W, Yu Z Y, Xue Y G, Wei H B, Du Y J, Greiner S, Rausch T, Liu L J. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J Exp Bot, 2017, 68: 469-482.
[46] Ge L F, Yu J B, Wang H L, Luth D, Bai G H, Wang K, Chen R J. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA, 2016, 113: 12414-12419.
doi: 10.1073/pnas.1611763113
[47] Liu J Y, Zhang Y W, Han X, Zuo J F, Zhang Z, Shang H, Song Q, Zhang Y M. An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J Exp Bot, 2020, 71: 6988-7002.
doi: 10.1093/jxb/eraa426
[48] Wang S D, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication. Nat Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[49] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.13181
[50] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006
[51] Nguyen C X, Paddock K J, Zhang Z Y, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.16928
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[4] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[5] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[6] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[7] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[8] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[9] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[10] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[11] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[12] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[13] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[14] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[15] JIANG Shu-Kun,WANG Li-Zhi,YANG Xian-Li,LI Bo,MU Wei-Jie,DONG Shi-Chen,CHE Wei-Cai,LI Zhong-Jie,CHI Li-Yong,LI Ming-Xian,ZHANG Xi-Juan,JIANG Hui,LI Rui,ZHAO Qian,LI Wen-Hua. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1174-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .