Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2351-2365.doi: 10.3724/SP.J.1006.2022.14145

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Differential response of different Radix pseudostellariae cultivars to continuous cropping stress and its intraspecific intercropping effects

LIN Zhi-Min1(), QIN Xian-Jin2, WU Hong-Miao1, PANG Zi-Qin2, LIN Wen-Xiong1,2,*()   

  1. 1. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-08-14 Accepted:2022-01-05 Online:2022-09-12 Published:2022-07-15
  • Contact: LIN Wen-Xiong E-mail:zhimin0591@qq.com;wenxiong181@163.com
  • Supported by:
    National Natural Science Foundation of China “Study on the Damage Mechanism of Soil Fusarium Virus on Continuous Cropping of Radix Pseudostellariae”(82003884);National Key Research and Development Plant-the Intergovernmental International Science and Technology Innovation Cooperation Key Project “Key Technologies for Ecological Control and Alleviation of Crop Continuous Cropping Obstacle”(2017YFE0121800)

Abstract:

It is an important pathway to promote the sustainable development of traditional Chinese medicine agriculture to explore the environment-friendly technology to alleviate the continuous cropping obstacles of medicinal plants. In this study, ISSR molecular marker technique was used to identify 8 cultivars of R. pseudostellariae from different authentic production areas in China, which proved to have obvious molecular polymorphism. Those identified cultivars were then used as experimental materials. High pressure gas chromatography (HPLC), high-through sequencing (HTS), Quantitative Real-time PCR (qRT-PCR), and crop physiology technology were used to explore the environmental adaptability of the medicinal plant varieties and their response to continuous cropping in the main producing area of R. pseudostellariae in Zherong, Fujian province during 2017-2019. Based on the results, two representative varieties of R. pseudostellariae were selected for intraspecific intercropping practice to study the effects of intraspecific intercropping on the growth of consecutive cropping R. pseudostellariae and its underlying mechanism of microbial flora in the rhizosphere soil. The results showed that the growth performance of these varieties was different grown in authentic production area of R. Pseudostellariae in Zherong, Fujian province. Three cultivars, such as Zhengshen 1 (ZSⅠ), Kangbing 1 (KB), and Qiantaizishen 1 (QT) had the highest medicinal yield, the reverse was true in the case of Jiangsujurong (JR) and Xuanshen 1 (XS) cultivars in newly cropping condition. Compared with that of the newly planted, the fresh weight of plant height, root length, and maximum root circumference and aboveground and underground parts decreased significantly at the seedling stage, respectively, thus resulting in shortened root tuber, decreasing single root tuber weight at the mature stage, which was considered as the main reasons for the significant decrease in the yield of R. pseudostellariae after monoculture for two years. In terms of medicinal quality, in the comparison with those of the newly planted, R. pseudostellariae, the contents of main active components, such as total polysaccharides and heterophyllin B were decreased significantly, the reverse was true in the contents of total saponins in all used cultivars after monoculture for two years, of which ZSⅡcultivar stood out in the case. The results also suggested that it was the best way to alleviate the replanting diseases, consequently increased the medicinal yield and quality using a rotation mode with nonlocal cultivars or an intraspecific intercropping pattern by different cultivars. Further analysis showed that the intraspecific intercropping facilitation resulted from the improvement of rhizosphere soil microbial diversity in the cropping system, that is, it could significantly decrease pathogens such as Fusarium, oxysporum and increase beneficial bacteria such as Pseudomonas. spp, thus, improving the microbial structure and its functional diversity in rhizosphere soil under the intercropping system. Therefore, it is the key to realize the sustainable development of TCM agriculture to excavate the potential synergistic effect of intraspecific intercropping with multiple varieties of medicinal plants and construct the corresponding cultivation techniques in the cropping system.

Key words: Radix pseudostellariae, consecutive monoculture problems, intraspecific intercropping, rhizosphere microorganisms

Fig. 1

ISSR molecular markers analysis of different cultivars in R. pseudostellariae The red arrows represent polymorphic bands. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 2

Cluster dendrogram by ISSR molecular polymorphism similarity coefficients QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 3

Fresh weight of whole plant (a), aboveground part (b), underground part (c), and root-shoot ratio (d) of different cultivars of R. pseudostellariae at seedling stage under continuous cropping system *, **, and *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability levels, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 4

Fresh weight of whole plant (a), aboveground part (b), underground part (c), and root-shoot ratio (d) of different cultivars of R. pseudostellariae at the tuberous expanding stage under continuous cropping system *, **, and *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability levels, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 5

Tuberous root length (a), single fresh weight (b), and maximum root diameter (c) of different cultivars of R. pseudostellariae at harvest time under continuous cropping system *, **, and *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability levels, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 6

Tuberous roots of different cultivars of R. pseudostellariae at harvest time under continuous cropping system QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1; NP: the newly planted R. pseudostellariae, SP: the second year planted R. pseudostellariae."

Fig. 7

Comparison of fresh weight per unit of different cultivars R. pseudostellariae under continuous cropping system *, **, *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability level, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 8

Comparison of total polysaccharide between newly planted and consecutive cropping R. pseudostellariae *, **, and *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability levels, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 9

Comparison of total saponins between newly planted and consecutive cropping R. pseudostellariae *, **, and *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability levels, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 10

Comparison of heterophyllin B between newly planted and consecutive cropping R. pseudostellariae *, **, and *** indicate significant differences between two cultivation methods in different cultivars at the 0.05, 0.01, and 0.001 probability levels, respectively. QT: Qiantaizishen 1; XS: Xuanshen 1; KB: Kangbing 1; ZS I: Zheshen 1; ZS II: Zheshen 2; ST: Shitai 1; JR: Jiangsujurong; KD: Kangdu 1."

Fig. 11

Effect of intraspecific intercropping on the yield of continuously monocultured R. pseudostellaria FYF: newly planted Fujian Zheshen 2 cultivar; FYG: newly planted Guizhou Shitai 1 cultivar; SYF: continuously monocultured Fujian Zheshen 2 cultivar; SYG: continuously monocultured Guizhou Shitai 1 cultivar; SYIF: continuously intraspecific intercropped Fujian Zheshen 2 cultivar; SYIG: continuously intraspecific intercropped Guizhou Shitai 1 cultivar. Bars superscripted by different lowercase letters are significantly different at P < 0.05."

Table 1

Effects of intraspecific intercropping on alpha diversity of bacteria and fungi in rhizosphere soil of R. pseudostellariae under different consecutive-cropping cultivation systems"

处理
Treatment
细菌多样性指数 真菌多样性指数
Shannon Chao1 Shannon Chao1
对照 CK 9.99±0.04 a 2540.25±90.37 ab 5.67±0.21 bc 431.00±19.16 b
正茬柘参2号 FYF 9.63±0.34 b 2538.21±164.66 ab 5.40±0.31 d 353.52±26.36 c
正茬施太1号 FYG 9.60±0.15 bc 2268.15±49.64 c 5.46±0.35 cd 454.37±12.57 b
间作柘参2号 SYIF 9.32±0.08 cd 2390.62±133.77 bc 5.39±0.19 d 441.11±48.65 b
间作施太1号 SYIG 9.36±0.01 bcd 2618.38±116.20 a 6.08±0.17 a 470.32±38.79 b
重茬柘参1号 SYF 9.13±0.04 d 2526.46±78.79 ab 5.73±0.19 b 544.75±84.93 a
重茬施太1号 SYG 8.36±0.11 e 2043.52±57.85 d 5.80±0.19 b 409.19±49.76 bc

Fig. 12

Effects of intraspecific intercropping on the relative abundances of microbial genera (A: bacteria; B: fungi) in rhizosphere soil of R. pseudostellariae Comparisons were performed based on the 100 most abundant microbial genera, using LSD-test and P < 0.05 as the threshold of significance. In all of the graphs, positive log2 (Fold Change) values were associated with genera that were significantly more abundant in the intercropping samples (SYIF and SYIG) as compared to the consecutive monoculture samples (SYF and SYG)."

Fig. 13

Changes in abundance of Fusarium oxysporum, Pseudomonas, and Burkholderia in the rhizosphere of Pseudopseudostellarise under different treatments SYIGB is the intercropping Shitai 1 diseased plant, and other abbreviations are the same as in Fig. 11. Bars superscripted by different lowercase letters are significantly different at P < 0.05."

[1] 张重义, 林文雄. 药用植物的化感自毒作用与连作障碍. 中国生态农业学报, 2009, 17: 189-196.
Zhang Z Y, Lin W X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin J Eco-Agric, 2009, 17: 189-196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2009.00189
[2] 简在友, 王文全, 孟丽, 张子龙. 人参属药用植物连作障碍研究进展. 中国现代中药, 2008, 10(6): 3-5.
Jian Z Y, Wang W Q, Meng L, Zhang Z L. Progress on continuous cropping obstacle of ginseng medicinal plants. Mod Chin Med, 2008, 10(6): 3-5. (in Chinese with English abstract)
[3] 杨利民, 陈长宝, 王秀全, 张连学, 田义新. 长白山区参后地生态恢复与再利用模式及其存在的问题. 吉林农业大学学报, 2004, 26: 546-549.
Yang L M, Chen C B, Wang X Q, Zhang L X, Tian Y X. Ecological restoration and reused modes of old ginseng land in the Changbai mountainous area and its existing problems. J Jilin Agric Univ, 2004, 26: 546-549. (in Chinese with English abstract)
[4] 马承铸, 李世东, 顾真荣, 陈昱君, 周薇, 王勇, 刘云芝, 夏振远, 李云华. 三七连作田根腐病复合症综合治理措施与效果. 上海农业学报, 2006, 22(4): 63-68.
Ma C Z, Li S D, Gu Z R, Chen Y J, Zhou W, Wang Y, Liu Y Z, Xia Z Y, Li Y H. Measures of integrated control of root rot complex of continuous cropping Panax notoginseng and their control efficacy. Acta Agric Shanghai, 2006, 22(4): 63-68. (in Chinese with English abstract)
[5] Lin S, Huangpu J J, Chen T, Wu L K, Zhang Z Y, Lin W X. Effects of different cropping patterns on the physiology and quality of Pseudostellariae heterophylla. Int J Agric Biol, 2014, 16: 981-985.
[6] Wu H M, Qin X J, Wang J Y, Wu L K, Chen J, Fan J K, Zheng L, Tangtai H, Arafat Y, Lin W W, Luo X M, Lin S, Lin W X. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes. Agric Ecosyst Environ, 2019, 270: 19-31.
[7] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38: 298-310.
doi: 10.3724/SP.J.1258.2014.00027
Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chin J Plant Ecol, 2014, 38: 298-310. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00027
[8] Lin S, Huangpu J J, Chen T, Wu L K, Zhang Z Y, Lin W X. Analysis of soil microbial community structure and enzyme activities associated with negative effects of Pseudostellaria heterophylla consecutive monoculture on yield. Pak J Bot, 2015, 47: 761-769.
[9] Wu H M, Xu J J, Wang J Y, Qin X J, Wu L K, Li Z C, Lin S, Lin W W, Zhu Q, Khan M U. Insights into the mechanism of proliferation on the special microbes mediated by phenolic acids in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Front Plant Sci, 2017, 8: 659.
doi: 10.3389/fpls.2017.00659
[10] Striebel M, Singer G, Stibor H, Andersen T. “Trophic overyielding”: phytoplankton diversity promotes zooplankton productivity. Ecology, 2012, 93: 2719-2727.
pmid: 23431601
[11] Essarioui A, Kistler H C, Kinkel L L. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities. Plant Soil, 2016, 409: 329-343.
doi: 10.1007/s11104-016-2968-0
[12] Yang L N, Pan Z C, Zhu W, Wu E J, He D C, Yuan X, Qin Y Y, Wang Y, Chen R S, Thrall P H. Enhanced agricultural sustainability through within-species diversification. Nat Sustain, 2019, 2: 46-52.
doi: 10.1038/s41893-018-0201-2
[13] 康传志, 周涛, 江维克, 赵丹, 郭兰萍, 张小波, 朱寿东. 野生太子参的生态适宜分布区划. 贵州农业科学, 2016, 44(7): 96-100.
Kang C Z, Zhou T, Jiang W K, Zhao D, Guo L P, Zhang X B, Zhu S D. Ecology suitability regionalization of wild Radix pseudostellariae. Guizhou Agric Sci, 2016, 44(7): 96-100. (in Chinese with English abstract)
[14] 康传志, 周涛, 郭兰萍, 黄璐琦, 朱寿东, 肖承鸿. 全国栽培太子参生态适宜性区划分析. 生态学报, 2016, 36: 2934-2944.
Kang C Z, Zhou T, Guo L P, Huang L Q, Zhu S D, Xiao C H. Ecological suitability and regionalization of Pseudostellaria heterophylla (Miq) Pax ex Pax et Hoffm. in China. Acta Ecol Sin, 2016, 36: 2934-2944. (in Chinese with English abstract)
[15] Burdon J J, Barrett L G, Rebetzke G, Thrall P H. Guiding deployment of resistance in cereals using evolutionary principles. Evol Appl, 2014, 7: 609-624.
doi: 10.1111/eva.12175
[16] Zhan J, Thrall P H, Papaïx J, Xie L H, Burdon J J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu Rev Phytopathol, 2015, 53: 19-43.
doi: 10.1146/annurev-phyto-080614-120040
[17] Garrett K A, Mundt C C. Host diversity can reduce potato late blight severity for focal and general patterns of primary inoculum. Phytopathology, 2000, 90: 1307-1312.
doi: 10.1094/PHYTO.2000.90.12.1307 pmid: 18943370
[18] Newton A C, Ellis R P, Hackett C A, Guy D C. The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Mol Plant Pathol, 1997, 45: 930-938.
[19] Zhu Y Y, Chen H, Fan J, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leungk H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718.
doi: 10.1038/35021046
[20] Carson M L. Crown rust development and selection for virulence in Puccinia coronata f. sp. avenae in an oat multiline cultivar. Plant Dis, 2009, 93: 347-353.
doi: 10.1094/PDIS-93-4-0347 pmid: 30764226
[21] Mundt C C, Sackett K E, Wallace L D. Landscape heterogeneity and disease spread: experimental approaches with a plant pathogen. Ecol Appl, 2011, 21: 321-328.
doi: 10.1890/10-1004.1
[22] Newton A C. Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Res, 2012, 128: 91-100.
doi: 10.1016/j.fcr.2011.12.004
[23] Doring T F. Comparative analysis of performance and stability among composite cross populations, variety mixtures and pure lines of winter wheat in organic and conventional cropping systems. Field Crops Res, 2015, 183: 235-245.
doi: 10.1016/j.fcr.2015.08.009
[24] Sommerhalder R J, McDonald B A, Mascher F, Zhan J S. Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum. BMC Evol Biol, 2011, 11: 188.
doi: 10.1186/1471-2148-11-188 pmid: 21718545
[25] Zhan J, Mundt C C, Hoffer M E, McDonald B A. Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J Evol Biol, 2002, 15: 634-647.
doi: 10.1046/j.1420-9101.2002.00428.x
[26] Carson M L. Crown rust development and selection for virulence in Puccinia coronata f. sp. avenae in an oat multiline cultivar. Plant Dis, 2009, 93: 347-353.
doi: 10.1094/PDIS-93-4-0347 pmid: 30764226
[27] Chin K M, Wolfe M S. Selection on Erysiphe graminis in pure and mixed stands of barley. Plant Pathol, 1984, 33: 535-546.
doi: 10.1111/j.1365-3059.1984.tb02878.x
[28] Ikoyi I, Fowler A, Schmalenberger A. One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services. Sci Total Environ, 2018, 630: 849-858.
doi: 10.1016/j.scitotenv.2018.02.263
[29] Yao Q, Liu J, Yu Z, Li Y S, Jin J, Liu X B, Wang G H. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem, 2017, 110: 56-67.
doi: 10.1016/j.soilbio.2017.03.005
[30] Lievens B, Brouwer M, Vanachter A, Lévesque C A, Cammue B P A, Thomma B P H J. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microb, 2005, 7: 1698-1710.
doi: 10.1111/j.1462-2920.2005.00816.x
[31] Fierer N, Jackson J A, Vilgalys R. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environl Microb, 2005, 71: 4117-4120.
[32] Wu H M, Lin M H, Rensing C, Qin X J, Zhang S K, Chen J, Wu L K, Zhao Y L, Lin S, Lin W X. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant Soil, 2020, 454: 411-430.
doi: 10.1007/s11104-020-04659-1
[33] 史辉, 董晓菲, 阮少江, 叶祖云. 太子参ISSR反应体系的优化. 安徽农业大学学报, 2016, 43: 820-826.
Shi H, Dong X F, Ruan S J, Ye Z Y. Optimization of the ISSR reaction system for Radix pseudostellariae. J Anhui Agric Univ, 2016, 43: 820-826. (in Chinese with English abstract)
[34] 王美军, 黄乐, 刘昆玉, 杨国顺, 钟晓红, 徐丰, 白描, 金燕, 石雪晖. 刺葡萄ISSR分子标记体系的建立及种质资源聚类分析. 果树学报, 2017, 34: 279-287.
Wang M J, Huang L, Liu K Y, Yang G S, Zhong X H, Xu F, Bai M, Jin Y, Shi X H. Establishment of ISSR marker system and analysis of genetic diversity in Vitis davidii Foëx. J Fruit Sci, 2017, 34: 279-287. (in Chinese with English abstract)
[35] Dixon P. VEGAN, a package of R functions for community ecology. J Veget Sci, 2003, 14: 927-930.
doi: 10.1111/j.1654-1103.2003.tb02228.x
[36] 杨昌贵, 江维克, 周涛, 肖承鸿, 艾强, 张代金. 不同种源太子参中多糖和氨基酸含量的比较研究. 中国现代中药, 2014, 16(1): 32-37.
Yang C G, Jiang W K, Zhou T, Xiao C H, Ai Q, Zhang D J. Comparative analysis of polysaccharide and amino acid content in different provenances of Pesudostellaria heterophylla from Guizhou province. Modern Chin Med, 2014, 16(1): 32-37. (in Chinese with English abstract)
[37] 杨昌贵, 周涛, 肖承鸿, 艾强, 陈传艺, 熊厚溪, 江维克. 不同种源太子参生物量与太子参环肽B含量的分析. 贵阳中医学院学报, 2014, 36(1): 14-16.
Yang C G, Zhou T, Xiao C H, Ai Q, Chen C Y, Xiong H X, Jiang W K. Comparative analysis of biomass and heterophyllin B content in different provenances of Pesudostellaria heterophylla from Guizhou province. J Guiyang Coll Tradit Chin Med, 2014, 36(1): 14-16. (in Chinese with English abstract)
[38] 崔秀明, 陈中坚, 王朝梁, 杨双兰, 高宏光, 曾群望. 土壤环境条件对三七皂甙含量的影响. 人参研究, 2000, 12(3): 18-21.
Cui X M, Chen Z J, Wang C L, Yang S L, Gao H G, Zeng Q W. Effects of soil environmental conditions on the content of Panax notoginseng saponins. Renshen Yanjiu, 2000, 12(3): 18-21. (in Chinese with English abstract)
[39] 曾令杰, 林茂兹, 李振方, 戴林泉, 戴林泉, 李吉, 李晶晶, 张重义, 林文雄. 连作对太子参光合作用及药用品质的影响. 作物学报, 2012, 38: 1522-1528.
doi: 10.3724/SP.J.1006.2012.01522
Zeng L J, Lin M Z, Li Z F, Dai L Q, Dai L Q, Li J, Li J J, Zhang C Y, Lin W X. Effects of continuous cropping on photosynthesis and medicinal quality of Pseudostellariae heterophylla. Acta Agron Sin, 2012, 38: 1522-1528 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01522
[40] Chen J, Wu L K, Xiao Z G, Wu Y H, Wu H M, Qin X J, Wang J Y, Wei X Y, Khan M U, Lin S. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR. Front Microbiol, 2017, 8: 1748.
doi: 10.3389/fmicb.2017.01748 pmid: 28966607
[41] 刘巧红, 程大友, 杨林, 罗成飞, 孔凡江, 吴玉梅. 甜菜品种(系)的ISSR标记数字指纹图谱构建及聚类分析. 农业工程学报, 2012, 28(增刊2): 280-284.
Liu Q H, Cheng D Y, Yang L, Luo C F, Kong F J, Wu Y M. Construction of digital fingerprinting and cluster analysis using ISSR markers for sugar beet cultivars (lines). Trans CSAE, 2012, 28(S2): 280-284. (in Chinese with English abstract)
[42] 冯业强, 夏品华, 龙健, 伍庆, 魏进. 连作年限对太子参产量及品质的影响. 贵州农业科学, 2010, 38(10): 61-63.
Feng Y Q, Xia P H, Long J, Wu J, Wei J. Effects of continuous cropping on yield and quality of Pseudostellariae heterophylla. Guizhou Agric Sci, 2010, 38(10): 61-63. (in Chinese with English abstract)
[43] 赵凯, 赢飘, 张欣, 曹国璠. 连作年限对太子参经济性状、产量及品质的影响. 湖北农业科学, 2012, 51(24): 174-178.
Zhao K, Ying P, Zhang X, Cao G P. Effects of continuous cropping year on economic characters, yield and quality of Radix Pseudostellariae. Hubei Agric Sci, 2012, 51(24): 174-178. (in Chinese with English abstract)
[44] 李振方, 杨燕秋, 谢冬凤, 朱兰芳, 张自冠, 黄木极, 刘宗泉, 张重义, 林文雄. 连作条件下地黄药用品质及土壤微生态特性分析. 中国生态农业学报, 2012, 20: 217-224.
Li Z F, Yang Y Q, Xie D F, Zhu L F, Zhang Z G, Huang M J, Liu Z Q, Zhang C Y, Lin W X. Effects of continuous cropping on the quality of Rehmannia glutinosa L. and soil micro- ecology. Chin J Eco-Agric, 2012, 20: 217-224. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.00217
[45] Chowdhury M, Rosario E. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mungbean intercropping. J Agric Sci, 1994, 122: 193-199.
doi: 10.1017/S0021859600087360
[46] 申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新. 土壤学报, 2021, 58: 805-813.
Shen J B, Bai Y, Wei Z, Chu C C, Yuan L X, Zhang L, Cui Z L, Cong W F, Zhang F S. Rhizobiont: an interdisciplinary innovation and perspective for harmonizing resources, environment, and food security. Acta Pedol Sin, 2021, 58: 805-813. (in Chinese with English abstract)
[47] 王建华, 陈婷, 林文雄. 植物化感作用类型及其在农业中的应用. 中国生态农业学报, 2013, 21: 1173-1183.
Wang J H, Chen T, Lin W X. Plant allelopathy types and their application in agriculture. Chin J Eco-Agric, 2013, 21: 1173-1183. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2013.01173
[1] CHEN Hong-Fei, PANG Xiao-Min, ZHANG Ren, ZHANG Zhi-Xing, XU Qian-Hua, FANG Chang-Xun, LI Jing-Yong, LIN Wen-Xiong . Effects of Different Irrigation and Fertilizer Application Regimes on Soil Enzyme Activities and Microbial Functional Diversity in Rhizosphere of Ratooning Rice [J]. Acta Agron Sin, 2017, 43(10): 1507-1517.
[2] JIA Zhi-Hong;SUN Min;YANG Zhen-Ping;MIAO Guo-Yuan. Influence of Different Fertilizers to Crop Rhizosphere Microorganisms [J]. Acta Agron Sin, 2004, 30(05): 491-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!