Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 472-484.doi: 10.3724/SP.J.1006.2023.23028

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities

XU Tong1,2(), LYU Yan-Jie1,2, SHAO Xi-Wen1, GENG Yan-Qiu1, WANG Yong-Jun1,2,*()   

  1. 1Agronomy College, Jilin Agricultural University, Changchun 131182, Jilin, China
    2Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences / State Engineering Research Center of Predominant Food Crops, Changchun 130033, Jilin, China
  • Received:2022-03-15 Accepted:2022-06-07 Online:2022-07-08 Published:2022-07-08
  • Contact: WANG Yong-Jun E-mail:15075235692@163.com;yjwang2004@126.com
  • Supported by:
    Agricultural Science and Technology Innovation Program of Jilin Province(CXGC2017JQ006);National Key Research and Development Program of China(2017YFD0300303);National Natural Science Foundation of China(31701349)

Abstract:

A proper canopy structure ensures that the productive functions of the crop community are fully utilized, the spraying chemical regulator is one of the most important measures to shape the crop canopy, among which the selection of chemical control period is very crucial. The maize variety Xianyu 335 was used as the experimental material, field experiments were conducted with three treatments with two planting densities at 60,000 plants hm-2 (D1) and 90,000 plants hm-2 (D2) (chemical regulator made of ethephon), T10 (spray chemical regulator at the 10-leaf), T15 (spray chemical regulator at the 15-leaf), and CK (spray water as control). Therefore, it is important to explore the regulation of maize canopy structure and analyze the effect of changing canopy structure on grain-filling characteristics and yield. The results showed that at D1 density, the chemical regulator treatment had no significant effect on yield; at D2 density, compared with the CK, yield of T15 increased by 7.3% on average in two years, the number of kernel and the 1000-kernel weight increased by 2.6% and 3.3%, respectively, the number of kernels and the 1000-kernel weight decreased in T10. The upper leaf angle was reduced by 17.5% at T15 and the leaf area at the 14-17 leaf position was reduced, increased the light energy interception at the ear position leaf at 11.5%, and maintained a high net photosynthetic rate (Pn) at milk stage, a significant increase of 51.3% in leaf area index (LAI) at the physiological maturity, delayed the senescence of the lower and middle leaves, increased dry matter accumulation of post anthesis and the transfer amount of dry matter, extended active grain filling period (P), reduced the days of maximum grain filling (Tmax) by 0.8 d, increased the weight of maximum grain filling rate (Wmax) and maximum grain-filling rate (Gmax) by 7.3% and 4.0% respectively and increased average grain-filling rate (Vmax) by 6.9%. Compared with D1, D2 significantly improved maize canopy structure, increased light energy utilization in maize populations, increased post-flowering dry matter accumulation, and promoted yield. After the chemical regulator treatment, leaf area of the upper leaves (14-17) was negatively correlated with light energy interception in the middle of the canopy, kernel number, 1000-kernel weight, and yield, and the yield was positively correlated with 1000-kernel weight, kernel number, net photosynthetic rate, post-flowering dry matter accumulation, the weight of maximum grain filling rate and the grain-filling rate. In summary, the spraying of the chemical regulator at the 15-leaf stage of high density was effective in improving the upper canopy structure of the population, resulting in a reduction in leaf area and leaf angle to optimize the light conditions of the population, and enhanced photosynthetic capacity at the late of grain filling, increased grain-filling rate, and it can achieve efficient utilization of light energy and synergistic increase in yield.

Key words: maize, chemical regulator, canopy structure, grain-filling, yield

Fig. 1

Daily average air temperature and precipitation during maize growing season in 2019 and 2020"

Table 1

Effect of different planting densities and times of chemical regulator spraying on grain yield and yield components of maize"

年份
Year
密度
Density
化控处理
Treatment
公顷有效穗数
Productive ears per
hectare
穗粒数
Kernels per ear
千粒重
1000-kernel weight (g)
产量
Yield
(t hm-2)
2019 D1 CK 55,677.7±1268.9 c 569.8±7.6 b 315.1±1.1 ab 11.6±0.2 cd
T10 56,410.3±1268.9 c 561.5±5.3 b 308.3±7.9 ab 11.3±0.1 d
T15 56,410.3±1268.9 c 572.5±13.8 b 316.8±1.7 a 11.9±0.1 bcd
D2 CK 75,457.9±1268.9 b 465.0±3.9 e 295.7±4.4 d 12.1±0.4 bc
T10 84,249.1±1268.9 b 430.1±6.3 f 280.5±6.1 e 11.8±0.4 bcd
T15 76,190.5±1268.9 a 475.0±4.6 e 306.1±2.8 bc 12.9±0.2 a
2020 D1 CK 55,677.7±1268.9 c 588.4±5.9 a 317.0±1.8 a 12.1±0.3 bc
T10 57,875.5±2537.8 c 593.0±5.0 a 299.1±11.7 cd 11.9±0.3 bcd
T15 57,142.9±2197.8 c 593.9±4.8 a 312.4±3.0 ab 12.3±0.3 b
D2 CK 74,725.3±2197.8 b 488.5±6.2 d 282.9±4.4 e 12.0±0.1 bc
T10 82,783.9±1268.9 a 469.6±7.4 e 265.6±0.3 f 12.0±0.1 bc
T15 75,457.9±2537.8 b 502.9±4.4 c 293.4±3.1 d 12.9±0.6 a
变异来源
Source of variation
年份Year (Y) ns ** ** *
密度Density (D) ** ** ** **
化控处理Treatment (T) ** ** ** **
Y×D ns ns ** ns
Y×T ns * ns ns
D×T ** ** ** *
Y×D×T ns ns ns ns

Fig. 2

Effect of different planting densities and times of chemical regulator spraying on maize plant height and ear height Treatments are the same as those given in Table 1. Different lowercase letters indicate significant differences at the 0.05 probability level."

Table 2

Effect of different planting densities and times of chemical regulator spraying on maize leaf angel and light interception rate"

年份
Year
密度
Density
化控处理
Treatment
叶夹角Leaf angel (°) 光能截获率Light interception rate (%)
上部
Upper leaf
中部
Middle leaf
下部
Lower leaf
上部
Upper leaf
中部
Middle leaf
下部
Lower leaf
2019 D1 CK 30.2±0.6 a 34.8±0.8 ab 39.4±4.5 a 67.4±8.2 b 76.7±1.9 efg 95.6±1.7 abc
T10 27.6±0.3 bc 36.3±0.8 ab 37.8±0.7 ab 57.5±1.1 cd 79.8±2.4 de 95.1±1.7 bcd
T15 26.1±0.6 def 38.1±1.8 a 33.0±4.3 bcde 49.8±2.1 ef 86.7±2.2 bc 95.0±2.5 bcd
D2 CK 28.5±0.6 b 30.1±0.3 c 28.9±0.3 ef 77.0±3.6 a 82.4±4.1 cd 97.1±0.8 ab
T10 25.4±0.9 ef 33.4±0.9 bc 26.5±0.4 f 67.9±0.5 b 85.1±3.3 bc 96.6±1.3 ab
T15 23.7±0.6 g 35.0±0.9 ab 32.3±1.4 cde 55.2±2.8 de 92.1±0.3 a 97.7±0.8 a
2020 D1 CK 28.7±0.5 b 34.7±3.4 ab 36.9±3.9 abc 62.0±0.7 c 72.4±0.6 g 91.3±0.8 de
T10 26.2±0.5 cdf 38.1±3.9 a 37.0±1.6 abc 52.5±0.9 de 74.6±2.2 fg 90.9±2.1 e
T15 25.2±1.4 ef 37.0±3.7 ab 37.0±2.8 abc 46.4±1.4 f 78.0±5.1 def 90.9±0.4 e
D2 CK 27.3±1.0 bcd 30.6±0.5 c 34.9±1.4 abcd 72.2±1.0 ab 79.6±2.0 de 92.8±0.6 de
T10 24.6±0.8 fg 34.8±0.2 ab 31.0±2.2 def 62.0±0.7 c 82.1±2.8 cd 93.3±0.9 cde
T15 22.3±1.2 h 34.7±0.7 ab 36.1±2.7 abc 54.0±2.3 de 88.5±1.2 ab 94.0±0.8 cde
变异来源
Source of variation
年份Year (Y) ** ns ** ** ** **
密度Density (D) ** ** ** ** ** **
化控处理Treatment (T) ** ** ns ** ** ns
Y×D ns ns * ns ns ns
Y×T ns ns ns ns ns ns
D×T ns ns ** ns ns ns
Y×D×P ns ns ns ns ns ns

Fig. 3

Effect of different planting densities and times of chemical regulator spraying on maize leaf area index Treatments are the same as those given in Table 1. V15: 15-leaf stage; Vt: silking stage; R3: milk stage; R4: dough stage; R6: physiological maturity stage. **: P < 0.01; *: P < 0.05."

Fig. 4

Effect of different planting densities and times of chemical regulator spraying on maize leaf area Treatments are the same as those given in Table 1."

Fig. 5

Correlation of leaf area at different leaf positions with canopy light interception rate, yield and yield components Treatments are the same as those given in Table 1. AL: light interception rate above ear layer; EL: light interception rate of ear layer; UL: light interception rate of under ear layer; TKW: 1000-kernel weight. **: P < 0.01; *: P < 0.05."

Table 3

Effect of different planting densities and times of chemical regulator spraying on photosynthetic characteristics of maize in 2020"

生育时期Period 密度
Density
化控处理Treatment 净光合速率
Pn (µmol m-2 s-1)
气孔导度
Gs (mmol m-2 s-1)
胞间CO2浓度
Ci (µmol m-2 s-1)
蒸腾速率
Tr (mmol m-2 s-1)
Vt D1 CK 32.0±0.8 a 0.7±0.1 ab 261.0±11.3 de 6.9±0.8 bc
T10 31.4±1.3 a 0.5±0.1 bcd 274.4±8.9 cde 7.3±0.9 ab
T15 33.3±1.3 a 0.7±0.2 a 288.0±19.7 abc 9.2±1.4 a
D2 CK 24.8±0.8 cd 0.6±0.3 abc 264.1±9.0 de 4.4±1.2 de
T10 23.8±3.0 d 0.3±0.1 de 236.2±13.2 f 4.9±1.7 cde
T15 28.1±1.5 b 0.5±0.1 abcd 229.7±7.3 f 7.7±1.7 ab
R3 D1 CK 27.3±3.0 bc 0.5±0.1 bcd 302.3±9.8 a 6.1±1.1 bcd
T10 27.7±0.8 bc 0.4±0.1 cde 292.5±8.8 abc 6.0±0.7 bcd
T15 28.0±1.9 b 0.6±0.1 abc 299.1±14.8 ab 7.7±1.5 ab
D2 CK 17.9±1.1 e 0.2±0.0 e 279.5±8.1 bcd 3.0±0.3 e
T10 18.4±2.1 e 0.3±0.0 de 262.5±9.5 de 4.3±0.5 de
T15 23.6±1.3 d 0.4±0.1 bcde 257.1±1.3 e 4.7±0.4 de
变异来源
Source of variation
生育时期Period (P) ** ns ** **
密度Density (D) ** * ** **
化控处理Treatment (T) ** ** ns **
P×D ns ns ns ns
P×T ** ns ns ns
D×T ns ns ** ns
P×D×T ns ** ns ns

Table 4

Effect of different planting densities and times of chemical regulator spraying on dry matter accumulation and transport of maize"

年份
Year
密度
Density
化控处理
Treatment
花后干物质积累量
Dry matter accumulation post anthesis
(kg hm-2)
干物质转移量
Transfer amount of dry matter
(kg hm-2)
干物质转移率
Translocation
efficiency of dry matter (%)
转移干物质对籽粒贡献率
Contribution rate to the grain of dry matter
transportation (%)
2019 D1 CK 10,627.0±284.8 f 1768.6±104.8 e 19.3±0.9 ef 16.4±1.1 c
T10 10,389.7±230.3 f 1441.3±16.0 f 17.7±0.1 fg 13.8±0.4 e
T15 10,565.7±159.4 f 2024.8±95.7 cd 20.7±0.6 de 18.6±0.7 b
D2 CK 11,224.4±218.8 e 2203.6±18.1 c 20.1±0.4 de 18.7±0.0 b
T10 11,432.9±173.3 de 1964.0±75.1 d 18.1±0.7 fg 17.4±0.5 c
T15 13,194.0±114.7 a 3489.1±230.8 a 30.0±1.9 a 23.8±0.8 a
2020 D1 CK 9638.8±56.5 g 1708.1±115.9 e 17.9±1.3 fg 16.8±1.0 c
T10 10,734.5±468.6 f 1709.0±124.7 e 17.4±1.2 g 15.2±0.4 d
T15 11,942.0±286.8 bc 2449.6±44.2 b 24.6±0.5 c 18.6±0.5 b
D2 CK 11,760.4±423.4 cd 2482.8±53.0 b 21.5±0.2 d 19.8±0.3 b
T10 12,354.5±37.1 b 2195.8±140.6 c 18.5±1.0 fg 16.8±0.9 c
T15 13,571.8±222.2 a 3510.5±42.2 a 26.4±0.4 b 23.2±0.6 a
变异来源
Source of variation
年份Year (Y) ** ** ns ns
密度Density (D) ** ** ** **
化控处理Treatment (T) ** ** ** **
Y×D * ns * ns
Y×T ** ns ns ns
D×T ** ** ** **
Y×D×T ** ns ** ns

Fig. 6

Effect of different planting densities and times of chemical regulator spraying on maize 100-kernel weight Treatments are the same as those given in Table 1. **: P < 0.01; *: P < 0.05."

Table 5

Effect of different planting densities and times of chemical regulator spraying on grain filling parameters of maize"

年份
Year
密度
Density
处理
Treatment
A B C 决定系数
R2
Tmax
(d)
Gmax
(g d-1)
Wmax
(g)
Vmean
(g d-1)
P
(d)
2019 D1 CK 34.70 18.99 0.13 0.997 23.05 1.11 17.35 0.58 46.99
T10 34.26 21.33 0.13 0.998 23.42 1.12 17.13 0.58 45.92
T15 36.13 16.32 0.13 0.997 22.10 1.14 18.06 0.61 47.49
D2 CK 32.25 20.75 0.13 0.997 22.79 1.07 16.12 0.56 45.10
T10 30.93 22.32 0.13 0.998 23.08 1.04 15.46 0.53 44.59
T15 34.26 17.77 0.13 0.998 21.68 1.14 17.13 0.60 45.20
2020 D1 CK 33.47 21.40 0.14 0.997 22.38 1.15 16.73 0.59 43.84
T10 33.07 22.99 0.14 0.997 22.72 1.14 16.54 0.58 43.49
T15 34.84 18.19 0.13 0.996 21.85 1.16 17.42 0.61 45.18
D2 CK 31.26 23.96 0.14 0.999 22.37 1.11 15.63 0.57 42.25
T10 30.22 25.99 0.14 0.995 22.64 1.09 15.11 0.55 41.70
T15 33.90 18.40 0.13 0.997 21.80 1.13 16.95 0.60 44.92

Fig. 7

Correlation of yield and yield components with dry matter accumulation post anthesis, photosynthetic characteristics, and filling parameters TKW: 1000-kernel weight; KN: kernel number per ear; Pn: photosynthetic rate; DMA: dry matter accumulation post anthesis; Gmax: maximum grain-filling rate; Tmax: days of maximum grain filling; Wmax: weight of maximum grain filling rate; Vmean: average grain-filling rate; P: active grain filling period. **: P < 0.01; *: P < 0.05."

[1] 朴琳, 任红, 展茗, 曹凑贵, 齐华, 赵明, 李从锋. 栽培措施及其互作对北方春玉米产量及耐密性的调控作用. 中国农业科学, 2017, 50: 1982-1994.
Piao L, Ren H, Zhan M, Cao C G, Zhao M, Li C F. Effect of cultivation measures and their interactions on grain yield and density resistance of spring maize. Sci Agric Sin, 2017, 50: 1982-1994. (in Chinese with English abstract)
[2] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000 kg·hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45: 3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield (>15000 kg·hm-2) and yield components. Sci Agric Sin, 2012, 45: 3437-3445. (in Chinese with English abstract)
[3] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 1153-1160.
doi: 10.3724/SP.J.1006.2010.01153
Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153-1160. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01153
[4] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[5] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, Zhang Y, Wang R N, Arshad A, Hao X Y, Su M, Gao Z Q, Zhang L Z. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res, 2020, 257: 107926.
doi: 10.1016/j.fcr.2020.107926
[6] 王海永, 张明才, 陈小文, 牛晓雪, 苏贺, 董学会. 乙烯利对夏玉米子粒干物质积累的影响及生理机制探究. 玉米科学, 2013, 21(5): 57-61.
Wang H Y, Zhang M C, Chen X W, Niu X X, Su H, Dong X H. Effects of ethephon on dry matter accumulation in summer corn seeds and related physiological mechanism inquiry. J Maize Sci, 2013, 21(5): 57-61. (in Chinese with English abstract)
[7] Wang Q, Xue J, Chen J L, Fan Y H, Zhang G Q, Xie R Z, Ming B, Hou P, Wang K R, Li S K. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. J Integr Agric, 2020, 19: 2419-2428.
doi: 10.1016/S2095-3119(20)63259-2
[8] Gong L S, Qu S J, Huang G M, Guo Y L, Zhang M C, Li Z H, Zhou Y Y, Duan L S. Improving maize grain yield by formulating plant growth regulator strategies in north China. J Integr Agric, 2021, 20: 622-632.
doi: 10.1016/S2095-3119(20)63453-0
[9] Zhang Q, Zhang L Z, Evers J, Werf W V D, Zhang W Q, Duan L S. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Res, 2014, 164: 82-89.
doi: 10.1016/j.fcr.2014.06.006
[10] 张子学, 朱仕燕, 李文阳, 刘正. 化控剂-乙烯利对玉米植株主要性状和产量的影响. 中国农学通报, 2014, 30(3): 209-213.
Zhang Z X, Zhu S Y, Li W Y, Liu Z. Effect of chemical agent-ethephon on main characters and yield of maize. Chin Agric Sci Bull, 2014, 30(3): 209-213 (in Chinese with English abstract).
[11] 刘晓双, 顾万荣, 朴琳, 张立国, 周颖, 李彩凤, 李晶, 魏湜. 噻苯隆-乙烯利复配对春玉米籽粒灌浆特性的影响及其激素调控机理. 生态学杂志, 2017, 36: 3526-3534.
Liu X S, Gu W R, Piao L, Zhang L G, Zhou Y, Li C F, Li J, Wei S. Effects of mixture of thidiazuron and ethephon on grain-filling characteristics and hormone regulation mechanism in spring maize. Chin J Ecol, 2017, 36: 3526-3534. (in Chinese with English abstract)
[12] 聂乐兴, 姜兴印, 吴淑华, 张吉旺, 刘鹏. 胺鲜酯对高产夏玉米产量及叶片光合羧化酶和保护酶活性的影响. 应用生态学报, 2010, 21: 2558-2564.
Nie L X, Jiang X Y, Wu S H, Zhang J W, Liu P. Effect of DA-6 on leaf photosynthetic carboxylase and protective enzyme activities and grain yield of high-yielding summer maize. Chin J Appl Ecol, 2010, 21: 2558-2564. (in Chinese with English abstract)
[13] 刘文彬, 冯乃杰, 张盼盼, 李东, 张洪鹏, 何天明, 赵晶晶, 徐延辉, 王畅. 乙烯利和激动素对玉米茎秆抗倒伏和产量的影响. 中国生态农业学报, 2017, 25: 1326-1334.
Liu W B, Feng N J, Zhang P P, Li D, Zhang H P, He T M, Zhao J J, Xu Y H, Wang C. Effect of ethephon and kinetin on lodging-resistance and yield of maize. Chin J Eco-Agric, 2017, 25: 1326-1334. (in Chinese with English abstract)
[14] 孟佳佳, 董树亭, 石德杨, 张海燕. 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013, 39: 912-918.
Meng J J, Dong S T, Shi D Y, Zhang H Y. Relationship of ear differentiation with kernel development and barrenness in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 912-918. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00912
[15] 樊海潮, 顾万荣, 杨德光, 尉菊萍, 朴琳, 张倩, 张立国, 杨秀红, 魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响. 作物学报, 2018, 44: 909-919.
Fan H C, Gu W R, Yang D G, Yu J P, Piao L, Zhang Q, Zhang G L, Yang X H, Wei T. Effect of chemical regulators on physical and chemical properties and lodging resistance of spring maize stem in Northeast China. Acta Agron Sin, 2018, 44: 909-919. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00909
[16] 杨可攀, 顾万荣, 王悦力, 李文龙, 孟瑶, 孙继, 陈喜昌, 杨德光, 魏湜. 化控剂对玉米光合、激素及茎秆力学特性的影响. 玉米科学, 2017, 25(4): 75-83.
Yang K P, Gu W R, Wang Y L, Li W L, Meng Y, Sun J, Chen C X, Yang D G, Wei T. Effects of plant growth regulator on character of photosynthetic, hormone and stem mechanical properties in maize. J Maize Sci, 2017, 25(4): 75-83. (in Chinese with English abstract)
[17] Ahmad I, Kamran M, Ali S, Bilegjargal B, Cai T, Ahmad S, Meng X P, Su W N, Liu T N, Han Q F. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Res, 2018, 222: 66-77.
doi: 10.1016/j.fcr.2018.03.015
[18] Xu C L, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res, 2017, 200: 71-79.
doi: 10.1016/j.fcr.2016.10.011
[19] 李瑞杰, 闫鹏, 王庆燕, 许艳丽, 卢霖, 董志强, 张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米功能叶光合生理特性和产量的影响. 作物杂志, 2021, 37(1): 135-142.
Li R J, Yan P, Wang Q Y, Xu Y L, Lu L, Dong Z Q, Zhang F L. Effects of 5-aminolevulinnic acid and ethephon on physiology of leaves and yield of spring maize in northeast China. Crops, 2021, 37(1): 135-142. (in Chinese with English abstract)
[20] 孟祥盟, 孙宁, 边少锋, 方向前, 闫伟平, 彭涛涛, 赵洪祥, 谭国波, 张丽华. 化控技术对春玉米农艺性状及光合性能的影响. 玉米科学, 2014, 22(4): 78-83.
Meng X M, Sun N, Bian S F, Fang X Q, Yan W P, Peng T T, Zhao H X, Tan G B, Zhang L H. Effect of chemical control technology on agronomic characters and photosynthetic capacity of spring maize. J Maize Sci, 2014, 22(4): 78-83. (in Chinese with English abstract)
[21] 李瑞杰, 唐会会, 王庆燕, 许艳丽, 王琦, 卢霖, 闫鹏, 董志强, 张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应. 作物学报, 2020, 46: 1063-1075.
doi: 10.3724/SP.J.1006.2020.93065
Li R J, Tang H H, Wang Q Y, Xu Y L, Wang Q, Lu L, Yan P, Dong Z Q, Zhang F L. Effects of 5-aminolevulinnic acid and ethephon compound on carbon balance of source-sink of spring in northeast China. Acta Agron Sin, 2020, 46: 1063-1075. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93065
[22] 戚艺军, 耿延琢, 罗松彪, 刘政群, 丁翔, 张二朋, 王利民, 杨焰华, 齐伟, 佘宁安, 史文娟, 王浩波. 乙烯利不同施用方式对玉米农艺性状和产量的影响. 安徽农业大学学报, 2014, 41: 416-423.
Qi Y J, Geng Y Z, Luo S B, Liu Z Q, Ding X, Zhang E P, Wang L M, Yang Y H, Qi W, Shen N A, Shi W J, Wang H B. Effect of different ethephon applications on agronomic trait and grain yield of maize. J Anhui Agric Univ, 2014, 41: 416-423. (in Chinese with English abstract)
[23] 王海永, 张明才, 陈小文, 牛晓雪, 苏贺, 董学会. 乙烯利对夏玉米子粒干物质积累的影响及生理机制探究. 玉米科学, 2013, 21(5): 57-61.
Wang H Y, Zhang M C, Chen X W, Niu X X, Su H, Dong X H. Effects of ethephon on dry matter accumulation in summer corn seeds and related physiological mechanism inquiry. J Maize Sci, 2013, 21(5): 57-61. (in Chinese with English abstract)
[24] Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. Research progress on reduced lodging of high-yield and -density maize. J Integr Agric, 2017, 16: 2717-2725.
doi: 10.1016/S2095-3119(17)61785-4
[25] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01226
[26] 丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53: 3915-3927.
Ding X P, Bai J, Zhang C Y, Zhang J W, Liu P, Ren B Z, Zhao B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Sci Agric Sin, 2020, 53: 3915-3927. (in Chinese with English abstract)
[27] 裴文东, 张仁和, 王国兴, 雷文妮, 雷格丽, 高敏, 张宏军. 玉米冠层结构和群体光合特性对增密的响应. 玉米科学, 2020, 28(3): 92-98.
Pei W D, Zhang R H, Wang G X, Lei W N, Lei G G, Gao M, Zhang H J. Responses of canopy structure and population photosynthetic traits on increased planting density of different maize cultivars. J Maize Sci, 2020, 28(3): 92-98. (in Chinese with English abstract)
[28] 肖万欣, 刘晶, 史磊, 赵海岩, 王延波. 氮密互作对不同株型玉米形态、光合性能及产量的影响. 中国农业科学, 2017, 50: 3690-3701.
Xiao W X, Liu J, Shi L, Zhao H Y, Wang Y B. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different plant types. Sci Agric Sin, 2017, 50: 3690-3701. (in Chinese with English abstract)
[29] 申丽霞, 王璞, 张红芳, 易镇邪. 施氮对夏玉米不同部位籽粒灌浆的影响. 作物学报, 2005, 31: 532-534.
Shen L X, Wang P, Zhang H F, Yi Z X. Effect of nitrogen supply on grain-filling at different ear position in summer maize. Acta Agron Sin, 2005, 31: 532-534. (in Chinese with English abstract)
[30] 刘笑鸣, 顾万荣, 李从锋, 张立国, 王明泉, 龚士琛, 陈喜昌, 李彩凤, 魏湜, 李文华. 化学调控和氮肥对高密度下春玉米光热水利用效率和产量的影响. 中国农业科学, 2020, 53: 3083-3094.
Liu X M, Gu W R, Li C F, Zhang G L, Wang M Q, Gong S C, Chen X C, Li C F, Wei D, Li W H. Effects of chemical regulation and nitrogen fertilizer on radiation, heat and water utilization efficiency and yield of spring maize under dense planting condition. Sci Agric Sin, 2020, 53: 3083-3094. (in Chinese with English abstract)
[31] 边大红, 张瑞栋, 段留生, 李建民, 李召虎. 局部化控夏玉米冠层结构、荧光特性及产量研究. 华北农学报, 2011, 26(3): 139-145.
doi: 10.7668/hbnxb.2011.03.028
Bian D H, Zhang R D, Duan L S, Li J M, Li Z H. Effects of partial spraying of plant growth regulator on canopy structure, chlorophyll fluorescence characteristic and yield of summer maize (Zea mays L.). Acta Agric Boreali-Sin, 2011, 26(3): 139-145. (in Chinese with English abstract)
[32] 杨振芳, 孟瑶, 顾万荣, 王泳超, 李丽杰, 张翯, 曾繁星, 魏湜. 化控和密度措施对东北春玉米叶片衰老及产量的影响. 华北农学报, 2015, 30(4): 117-125.
doi: 10.7668/hbnxb.2015.04.021
Yang Z F, Meng Y, Gu W R, Wang Y C, Li L J, Zhang H, Zeng F X, Wei D. Effect of chemical regulation and density on spring maize leaf senescence and yield in northeast China. Acta Agric Boreali-Sin, 2015, 30(4): 117-125 (in Chinese with English abstract).
[33] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058. (in Chinese with English abstract)
[34] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47: 3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of maize hybrids differing in maturities. Sci Agric Sin, 2014, 47: 3557-3565. (in Chinese with English abstract)
[35] 李刘龙, 库旭灿, 李赟, 王小燕. 花后弱光对江汉平原稻茬小麦的产量及碳、氮分配效应的影响. 麦类作物学报, 2020, 40: 1364-1374.
Li L L, Ku X C, Li Y, Wang X Y. Effect of shading after anthesis on anthesis on yield and distribution of carbon and nitrogen of rice stubble wheat in Jiangshan plain. J Triticeae Crops, 2020, 40: 1364-1374. (in Chinese with English abstract)
[36] 郝梦波, 王空军, 董树亭, 张吉旺, 李登海, 刘鹏, 杨今胜, 柳京国. 高产玉米叶片冗余及其对产量和光合特性的影响. 应用生态学报, 2010, 21: 344-350.
Hao M B, Wang K J, Dong S T, Zhang J W, Li D H, Liu P, Yang J S, Liu J G. Leaf redundancy of high-yielding maize and its effects on maize yield and photosynthesis. Chin J Appl Ecol, 2010, 21: 344-350. (in Chinese with English abstract)
[37] 王海永, 陈小文, 牛晓雪, 苏贺, 申婷婷, 董学会. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014, 22(5): 64-70.
Wang H Y, Chen X W, Niu X X, Su H, Shen T T, Dong X H. Effects of ethephon on dry matter accumulation in summer corn seeds and related physiological mechanism inquiry. J Maize Sci, 2014, 22(5): 64-70 (in Chinese with English abstract).
[1] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[2] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[3] LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807.
[4] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[5] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[6] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi–Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[7] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[8] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[9] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[10] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[11] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[12] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[13] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[14] LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294.
[15] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!