Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 539-551.doi: 10.3724/SP.J.1006.2023.13067

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.)

SONG Jie1(), WANG Shao-Xiang2, LI Liang2, HUANG Jin-Ling2, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, LIU Peng1,*()   

  1. 1State Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Dongping County Agricultural and Rural Bureau, Tai’an, 271500, Shandong, China
  • Received:2021-11-22 Accepted:2022-02-25 Online:2022-03-24 Published:2022-03-24
  • Contact: LIU Peng E-mail:1253500871@qq.com;liup@sdau.edu.cn
  • Supported by:
    Shandong Province Key Research and Development Project(LJNY202103);Shandong Provincial Maize Industry Technology System Project(SDAIT-02-08)

Abstract:

Field experiments were conducted at Dongping Agricultural Science Institute, Tai’an city, Shandong province from 2019 to 2020, using Denghai 605 (DH605) as the experimental material. To study the effects of K application on summer maize grain yield, nutrient uptake and transportation, and utilization under continuous multi-year straw return conditions, five K2O application rates of 0 kg hm-2 (K0), 150 kg hm-2 (K1), 225 kg hm-2 (K2), 300 kg hm-2 (K3), and 375 kg hm-2 (K4) were set under uniform N and P fertilizer rates (N 225 kg hm-2 and P2O5 110 kg hm-2). The results showed that K application significantly increased grain yield with the highest increase at 225 kg hm-2 in both years, 13.64% and 15.27% in 2019 and 2020, respectively. K application significantly increased maize leaf area index, biomass and the intensity of dry matter transfer to the ears, promoted plant uptake of N, P and K, and increased maize N, P and K accumulation and the proportion of N and P accumulation after flowering, but the efficiency gain decreased when the K application was less than 225 kg hm-2. With the increase of K application, the nutrient transport of maize increased and then decreased, with the highest amount of nutrient translocation and the contribution rate of nutrient translocation at 300 kg hm-2. The nutrient harvest index, apparent utilization efficiency of N, P, and K, and agronomic utilization efficiency of K remained at a high level when K application rate was at 225 kg hm-2, and the fertilizer utilization efficiency decreased significantly when K application rate exceeded 300 kg hm-2. The appropriate amount of K application promoted the shoot growth of summer maize, increased biomass accumulation, significantly improved the uptake efficiency and plant N, P, and K accumulation of summer maize, optimized post-flowering nutrient accumulation and distribution, and improved the contribution of nutrient translocation to the formation of grain yield, thus improving the grain yield and nutrient utilization of summer maize. Considering the factors of grain yield, nutrient accumulation and transport, and fertilizer utilization, the K application rate of 225 kg hm-2 was suitable for this experiment.

Key words: potassium application, summer maize, nutrient uptake and utilization, grain yield

Table 1

Effects of different potassium fertilizers on yield and yield components of summer maize"

年份 Year 处理
Treatment
单位面积穗数
Ear numbers
(×104 hm-2)
穗粒数
Grains numbers
(grain ear-1)
千粒重
1000-kernel
weight (g)
籽粒产量
Grain yield
(t hm-2)
2019 K0 6.76±0.05 a 541.81±1.92 b 328.35±2.43 b 12.02±0.18 c
K1 6.75±0.06 a 562.84±4.60 ab 343.28±1.55 a 13.04±0.25 b
K2 6.84±0.03 a 580.80±3.05 a 343.87±1.75 a 13.66±0.30 a
K3 6.84±0.08 a 554.78±2.66 b 341.96±0.07 a 12.98±0.33 b
K4 6.83±0.05 a 556.24±3.77 b 339.51±0.57 a 12.90±0.31 b
2020 K0 6.52±0.07 a 558.28±3.71 c 324.03±0.15 c 11.79±0.10 c
K1 6.62±0.13 a 581.18±9.69 ab 346.07±4.39 a 13.34±0.32 a
K2 6.56±0.04 a 590.29±4.31 a 351.15±2.56 a 13.59±0.15 a
K3 6.62±0.10 a 575.71±6.71 b 336.02±1.03 b 12.79±0.30 b
K4 6.58±0.04 a 584.44±4.66 ab 333.97±2.37 b 12.84±0.20 b

Fig. 1

Variation in leaf area index of summer maize in different treatments K0: 0 kg hm-2 K2O applied; K1: 150 kg hm-2 K2O applied; K2: 225 kg hm-2 K2O applied; K3: 300 kg hm-2 K2O applied; K4: 375 kg hm-2 K2O applied; V6: elongation stage; V9: 9 leaves stage; V12: 12 leaves stage; Vt: tassel stage; R2: filing stage; R3: milking stage. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Fig. 2

Variation in biomass of summer maize population in different treatments K0: 0 kg hm-2 K2O applied; K1: 150 kg hm-2 K2O applied; K2: 225 kg hm-2 K2O applied; K3: 300 kg hm-2 K2O applied; K4: 375 kg hm-2 K2O applied. V6: elongation stage; V9: 9 leaves stage; V12: 12 leaves stage; Vt: tassel stage; R2: filling stage; R3: milking stage; R6: maturing stage. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively."

Table 2

Effects of different potassium fertilizers on dry matter translocation of summer maize"

年份 Year 处理 Treatments 叶 Leaf 茎 Stem 总量 Total
DMR
(t hm-2)
DMRE
(%)
DMRCG
(%)
DMR
(t hm-2)
DMRE
(%)
DMRCG
(%)
DMR
(t hm-2)
DMRE
(%)
DMRCG
(%)
2019 K0 0.27±0.02 b 12.95±1.22 c 2.92±0.22 c 0.11±0.01 c 2.38±0.12 d 1.21±0.21 c 0.39±0.02 d 15.33±2.03 c 4.25±0.54 c
K1 0.68±0.08 a 22.03±2.25 b 4.92±1.10 a 0.25±0.04 c 4.75±0.87 cd 1.77±0.47 c 0.92±0.10 c 26.79±1.54 b 6.70±0.54 b
K2 0.79±0.09 a 31.13±3.22 a 5.52±0.87 a 0.91±0.07 a 15.76±1.54 a 6.47±0.87 b 1.70±0.15 a 46.90±2.54 a 11.96±1.87 a
K3 0.32±0.06 b 12.05±0.21 c 2.37±042 c 0.92±0.06 a 18.18±2.11 a 7.79±0.45 a 1.23±0.10 b 30.23±2.54 b 9.16±0.89 a
K4 0.08±0.01 c 3.16±0.54 d 0.67±0.01 d 0.49±0.06 b 8.32±1.21 b 6.44±1.01 b 0.57±0.11c 11.49±2.01 c 4.85±0.56 c
2020 K0 0.20±0.04 c 9.92±1.12 c 2.46±0.07 c 0.61±0.11 c 12.23±1.21 b 6.53±0.87 c 0.76±0.06 d 8.84±1.87 c 9.38±1.68 c
K1 0.85±0.14 b 29.16±2.21 b 7.47±1.01 b 0.75±0.10 bc 11.19±1.23 b 6.63±0.54 c 1.68±0.17 c 14.79±2.05 b 14.81±2.22 b
K2 1.19±0.10 a 32.70±2.22 ab 9.19±1.87 a 0.95±0.153 b 11.97±0.37 b 7.41±0.54 bc 2.48±0.22 b 17.93±2.22 b 19.10±2.10 ab
K3 1.31±0.08 a 36.12±1.57 a 10.90±0.77 a 1.28±0.08 a 16.63±0.87 a 10.60±1.32 a 2.91±0.14 a 21.63±2.21 a 24.13±0.78 a
K4 1.16±0.15 a 35.83±2.54 a 10.71±2.11 a 0.96±0.15 b 14.22±0.98 a 8.75±0.87 b 2.43±0.20 b 20.747±0.87 a 22.41±1.54 a

Table 3

Effects of different potassium fertilizers on nutrient accumulation of summer maize plant"

养分
Nutrient
年份
Year
处理
Treatment
养分积累量 Nutrient accumulation (kg hm-2)
V9 V12 Vt R2 R3 R6
N 2019 K0 33.76±0.42 d 45.70±0.80 c 91.27±2.42 e 100.66±2.14 c 116.43±2.33 d 128.17±2.95 c
K1 40.10±1.22 bc 64.64±4.33 b 122.81±0.67 c 142.57±0.58 b 155.62±6.17 c 173.54±1.21 b
K2 46.32±0.91 a 72.55±2.35 a 134.81±3.25 b 179.37±0.98 a 199.78±0.95 a 230.27±5.67 a
K3 41.23±1.69 b 69.20±0.58 ab 145.27±2.58 a 170.54±2.98 a 174.21±4.15 b 191.29±7.29 b
K4 36.71±0.64 cd 66.82±1.13 ab 100.06±1.30 d 144.94±3.24 b 161.88±3.43 bc 177.70±9.94 b
2020 K0 32.13±0.40 d 51.05±0.90 d 85.02±2.25 c 106.68±1.32 d 110.14±2.87 d 116.45±2.42 e
K1 43.54±1.33 ab 57.13±3.82 cd 90.81±1.16 bc 144.46±0.47 b 156.20±8.03 c 165.78±0.94 d
K2 45.69±0.90 a 72.94±2.37 a 110.13±2.71 a 176.28±0.78 a 208.53±9.45 a 221.55±5.48 a
K3 40.21±1.65 bc 65.25±0.55 b 111.29±1.90 a 167.67±2.57 a 178.34±5.64 b 185.08±3.15 b
K4 39.83±0.70 c 62.79±1.06 bc 96.43±1.09 b 153.43±1.21 b 165.53±5.78 c 179.18±3.46 c
P 2019 K0 12.00±0.08 c 26.62±0.49 d 47.44±0.11 e 61.24±2.87 d 71.41±0.89 c 78.81±2.14 c
K1 16.09±0.47 b 32.58±0.38 b 54.24±1.11 c 72.61±0.69 c 87.88±1.67 b 107.86±1.24 a
K2 17.89±0.38 a 36.42±1.07 a 59.19±1.47 b 84.82±0.23 a 97.81±1.78 a 108.21±0.54 a
K3 18.55±0.77 a 32.14±0.62 b 57.49±1.06 a 70.81±2.38 b 94.85±1.67 a 101.73±2.44 ab
K4 14.97±0.26 b 29.54±0.55 c 49.18±1.24 d 65.47±1.21 d 89.94±3.20 b 97.17±1.01 b
2020 K0 10.85±0.49 c 26.94±0.57 c 38.07±0.11 d 60.66±2.71 c 67.43±0.78 c 73.61±2.45 c
K1 16.74±0.08 a 29.01±0.35 bc 40.05±0.88 d 76.04±3.04 a 87.50±0.68 b 100.85±0.94 b
K2 17.24±0.37 a 35.15±1.08 a 49.43±1.30 b 76.71±0.10 a 107.73±3.12 a 114.34±0.87 a
K3 16.25±0.76 ab 30.06±0.58 b 53.05±0.89 a 70.33±2.23 b 106.94±2.46 a 110.59±3.25 a
K4 14.97±0.24 b 27.80±0.52 c 45.40±1.20 c 66.18±1.48 b 95.40±2.44 b 100.68±1.54 b
K 2019 K0 36.10±0.58 d 77.48±2.07 c 83.04±0.45 c 129.81±2.49 e 121.48±1.73 d 119.30±5.16 d
K1 69.86±0.64 c 118.93±2.06 c 140.86±1.28 b 167.72±1.54 c 184.85±1.49 b 170.72±3.47 b
K2 81.31±1.20 a 132.16±0.02 a 165.90±0.20 a 185.41±2.74 a 194.34±1.29 a 188.37±0.46 a
K3 74.78±0.31 b 118.02±0.73 c 167.35±2.82 a 171.08±1.83 b 176.27±1.12 c 160.23±2.22 c
K4 69.35±0.31 c 124.45±1.73 b 146.24±0.37 b 157.94±0.97 d 179.37±1.54 c 160.45±1.48 c
2020 K0 32.14±0.47 e 65.72±11.12 c 77.90±0.64 d 133.20±2.53 d 123.37±1.87 e 108.57±4.26 d
K1 71.45±0.69 b 106.25±1.84 b 114.77±0.33 c 168.54±0.97 c 178.62±0.77 d 155.30±1.84 c
K2 77.56±1.17 a 126.11±0.03 a 153.85±2.14 a 194.44±2.18 a 234.09±1.29 a 201.37±0.56 a
K3 61.62±0.30 d 110.12±0.68 ab 144.04±2.16 b 185.89±1.73 b 216.90±1.51 b 174.39±2.66 b
K4 67.26±0.31 c 117.13±1.63 ab 151.17±0.37 a 169.03±1.21 c 190.13±1.65 c 159.62±1.44 c

Table 4

Effects of different potassium application rate on nutrient uptake efficiency of summer maize"

年份
Year
处理
Treatment
氮素吸收效率
N absorption efficiency
(kg kg-1)
磷素吸收效率
P absorption efficiency
(kg kg-1)
钾素吸收效率
K absorption efficiency
(kg kg-1)
2019 K0 0.57±0.01 c 0.63±0.01 c
K1 0.77±0.01 b 0.89±0.01 a 1.17±0.01 a
K2 1.02±0.02 a 0.89±0.01 a 0.86±0.01 b
K3 0.85±0.03 b 0.84±0.09 a 0.55±0.01 c
K4 0.79±0.07 b 0.72±0.02 b 0.44±0.02 d
2020 K0 0.52±0.01 e 0.56±0.02 d
K1 0.65±0.01 d 0.77±0.01 b 1.07±0.01 a
K2 0.98±0.02 a 0.89±0.01 a 0.92±0.01 b
K3 0.82±0.01 b 0.82±0.04 ab 0.60±0.01 c
K4 0.73±0.04 c 0.69±0.01 c 0.44±0.02 d

Table 5

Effects of different potassium application rate on nutrient translocation of summer maize"

养分 Nutrient 年份 Year 处理 Treatment 养分转运量
Nutrient translocation amount
(kg hm-2)
养分转运率
Nutrient translocation proportion
(%)
籽粒养分积累量
Grain nutrient
accumulation
(kg hm-2)
养分转运贡献率Contribution of nutrient translocation
(%)
N 2019 K0 10.70±2.29 c 19.29±3.64 c 85.52±0.88 c 12.52±2.66 c
K1 36.69±1.46 b 45.48±1.42 a 127.66±1.94 b 28.72±0.77 ab
K2 37.59±0.93 b 34.80±1.13 b 158.90±4.50 a 23.71±1.04 b
K3 45.02±1.91 a 42.76±1.64 a 131.74±5.93 b 34.36±1.04 a
K4 41.01±1.35 b 42.33±0.65 a 123.42±9.47 b 33.64±2.76 a
2020 K0 13.25±2.00 c 24.36±3.04 d 75.55±0.78 c 17.54±2.61 c
K1 39.52±1.41 b 48.24±1.36 a 104.88±1.59 b 37.66±0.84 a
K2 39.09±1.24 b 33.71±1.31 c 144.61±4.09 a 27.09±1.36 b
K3 47.93±2.27 a 41.80±1.86 b 118.37±5.35 b 40.52±1.18 a
K4 40.12±1.63 b 40.74±0.24 b 114.26±3.76 b 35.48±2.62 a
P 2019 K0 10.01±0.51 c 30.61±1.33 d 43.45±0.89 b 23.03±1.71 c
K1 14.71±0.69 b 33.16±1.37 c 62.55±1.12 a 23.51±1.74 c
K2 16.98±0.34 b 33.94±0.71 c 65.92±0.45 a 25.75±0.37 b
K3 18.65±0.22 a 40.03±0.48 a 64.60±5.37 a 34.78±1.45 a
K4 17.34±0.83 a 37.04±1.77 a 49.93±2.19 b 29.91±2.53 b
2020 K0 10.86±0.47 d 31.73±1.37 d 38.38±0.78 d 28.37±1.75 c
K1 15.11±0.64 c 33.31±0.65 c 51.38±0.92 bc 29.39±1.12 c
K2 20.92±0.37 b 37.25±0.66 b 59.99±0.40 a 34.86±0.38 b
K3 24.55±0.26 a 43.51±0.46 a 58.29±4.84 ab 43.17±3.64 a
K4 20.28±1.02 b 40.84±2.07 ab 46.22±2.03 c 42.92±1.79 a
K 2019 K0 16.31±0.77 c 17.38±0.70 a 31.95±0.97 d 51.05±0.57 b
K1 22.48±0.98 b 15.10±0.70 a 49.88±0.37 a 45.04±1.68 c
K2 25.62±0.16 a 15.02±0.10 a 49.24±0.33 a 52.03±0.60 b
K3 27.12±0.32 a 17.49±0.87 a 47.07±0.37 b 57.61±1.57 a
K4 18.73±2.18 c 14.03±1.55 a 41.22±0.22 c 45.44±5.19 c
2020 K0 18.88±2.26 c 17.99±2.05 a 28.22±0.85 e 66.90±7.67 c
K1 28.12±2.45 b 19.01±1.57 a 40.98±0.30 c 68.61±5.51 c
K2 29.74±0.81 b 15.43±0.37 b 44.82±0.30 a 66.35±1.39 c
K3 34.77±1.35 a 19.02±0.41 a 42.48±0.33 b 81.85±0.27 a
K4 29.05±1.84 b 18.59±1.08 a 38.16±0.20 d 76.13±4.44 b

Table 6

Effects of potassium application rate on nutrient utilization efficiency of summer maize"

养分
Nutrient
年份 Year 处理 Treatment 收获指数
Harvest index (%)
表观利用率
Apparent utilization (%)
农学利用率
Agronomic efficiency (kg kg-1)
N 2019 K0 66.76±0.91 b
K1 73.56±0.73 a 16.70±1.42 c
K2 68.99±0.54 b 38.54±3.22 a
K3 68.50±1.63 b 30.54±1.40 b
K4 69.31±1.62 b 18.98±3.68 c
2020 K0 64.91±0.75 bc
K1 71.22±0.77 a 13.69±0.42 d
K2 65.27±0.61 b 46.70±2.43 a
K3 63.89±1.84 c 30.50±1.40 b
K4 68.88±1.69 ab 21.82±4.13 c
P 2019 K0 62.76±0.23 b
K1 63.60±0.72 b 19.68±0.78 c
K2 67.37±0.38 a 28.99±1.24 a
K3 69.62±1.53 a 24.55±4.21 b
K4 62.82±1.52 b 13.57±0.87 d
2020 K0 62.15±0.22 ab
K1 60.36±0.75 b 21.23±0.78 b
K2 62.99±0.39 ab 30.43±1.54 a
K3 64.47±1.66 a 25.82±4.61 ab
K4 61.09±1.71 ab 12.58±1.45 c
K 2019 K0 25.43±0.67 b
K1 28.30±0.46 a 33.14±2.57 b 11.01±1.10 a
K2 25.36±0.15 b 38.97±2.14 a 9.50±0.61 a
K3 28.45±0.27 a 24.57±1.28 c 5.54±0.27 b
K4 24.93±0.19 b 14.98±1.47 d 2.46±0.22 c
2020 K0 24.74±0.68 ab
K1 25.53±0.42 a 30.98±1.04 b 12.63±0.84 a
K2 24.82±0.73 a 41.63±2.57 a 9.97±0.68 a
K3 23.54±0.53 bc 22.14±0.76 c 4.20±0.09 b
K4 23.16±0.84c 13.51±2.21 d 1.46±0.11 c
[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 刘晓永. 中国农业生产中的养分平衡与需求研究. 中国农业科学院研究生院博士学位论文, 北京, 2018.
Liu X Y. Study on Nutrients Balance and Requirement in Agricultural Production in China. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (in Chinese with English abstract)
[3] 王玉娜, 米国华. 北方春玉米施肥现状及节肥潜力. 玉米科学, 2021, 29(3):151-158.
Wang Y N, Mi G H. Fertilizer application in maize production in northern china: current status and fertilization optimal potential. J Maize Sci, 2021, 29(3): 151-158. (in Chinese with English abstract)
[4] 刘迎夏. 中国农田钾素养分盈亏平衡的时空变化. 吉林农业大学硕士学位论文, 吉林长春, 2017.
Liu Y X. Temporal and Spatial Variation in Potassium Nutrient Surplus and Deficit Balance in Farmland of China. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2017. (in Chinese with English abstract)
[5] 王晓磊, 于海秋, 刘宁, 依兵, 曹敏建. 耐低钾玉米自交系延缓叶片衰老的生理特性. 作物学报, 2012, 38: 1672-1679.
doi: 10.3724/SP.J.1006.2012.01672
Wang X L, Yu H Q, Liu N, Yi B, Cao M J. Physiological characteristics of delaying leaf senescence in maize inbred lines tolerant to potassium deficiency. Acta Agron Sin, 2012, 38: 1672-1679. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01672
[6] 李波, 张吉旺, 崔海岩, 靳立斌, 董树亭, 刘鹏, 赵斌. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38: 2093-2099.
doi: 10.3724/SP.J.1006.2012.02093
Li B, Zhang J W, Cui H Y, Jin L B, Dong S T, Liu P, Zhao B. Effects of K fertilization on yield, K use efficiency of summer maize under high yield conditions. Acta Agron Sin, 2012, 38: 2093-2099. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.02093
[7] Ghulam H A, Javaid A, Rafiq A, Moazzam J, Muhammad A H, Shafaqat A, Muhammad I. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul, 2015, 76: 111-125.
doi: 10.1007/s10725-015-0050-1
[8] Li Z L, Liu Z G, Zhang M, Li C L, Li Y C, Wan Y S, Cliff G M. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Tillage Res, 2020, 196: 104438.
doi: 10.1016/j.still.2019.104438
[9] 姚培清, 王易琼, 彭正萍. 钾肥用量对夏玉米干物质和钾素积累、分配及抗倒性的影响. 中国土壤与肥料, 2016, 53(4): 113-117.
Yao P Q, Wang Y Q, Peng Z P. Effects of potash application rates on the accumulation and distribution of dry matter and potassium nutrient and lodging resistance of maize. Soil Fert Sci China, 2016, 53(4): 113-117. (in Chinese with English abstract)
[10] 柳开楼, 黄晶, 叶会财, 韩苗, 韩天富, 宋惠洁, 胡志华, 胡丹丹, 李大明, 余喜初, 黄庆海, 李文军, 陈国钧. 长期施钾对双季玉米钾素吸收利用和土壤钾素平衡的影响. 植物营养与肥料学报, 2020, 26: 2235-2245.
Liu K L, Huang J, Ye H C, Han M, Han T F, Song H J, Hu Z H, Hu D D, Li D M, Yu X C, Huang Q H, Li W J, Chen G J. Effects of long-term potassium fertilization on potassium uptake, utilization and soil potassium balance in double maize cropping system. J Plant Nutr Fert, 2020, 26: 2235-2245. (in Chinese with English abstract)
[11] 杜琪, 赵跃, 周东英, 王晓光, 蒋春姬, 王婧, 赵新华, 于海秋. 低钾胁迫下不同耐低钾玉米品种(系)开花后根系生长和结构的变化. 植物营养与肥料学报, 2021, 27: 301-311.
Du Q, Zhao Y, Zhou D Y, Wang X G, Jiang C J, Wang J, Zhao X H, Yu H Q. Response of root growth and structure of different potassium sensitive maize cultivars (lines) to low potassium stress after flowering stage. J Plant Nutr Fert, 2021, 27: 301-311. (in Chinese with English abstract)
[12] Ali S, Inamullah, Arif M, Ali M, Lqbal M O, Munsif F, Khan A. Maize productivity as influenced by potassium under reduced irrigation regimes. Sarhad J Agric, 2019, 35: 171-181.
[13] Wasaya A, Yasir T A, Sarwar N, Farooq O, Rehman A U, Mubeen K, Ali M, Affan M, Aziz A. Foliage applied potassium improves stay green, photosynthesis and yield of maize (Zea mays L.) under rainfed condition. Plant Physiol Rep, 2021, 26: 38-48.
doi: 10.1007/s40502-021-00572-6
[14] 杜雄, 张立峰, 李会彬. 钾素营养对饲用玉米养分吸收动态及产量品质形成的影响. 植物营养与肥料学报, 2007, 13: 393-397.
Du X, Zhang L F, Li H B. Effects of potassium application on nutrient absorption dynamics, biomass and quality formation of forage maize. Plant Nutr Fert Sci, 2007, 13: 393-397. (in Chinese with English abstract)
[15] 谢佳贵, 侯云鹏, 尹彩侠, 孔丽丽, 秦裕波, 李前, 王立春. 施钾和秸秆还田对春玉米产量、养分吸收及土壤钾素平衡的影响. 植物营养与肥料学报, 2014, 20: 1110-1118.
Xie J G, Hou Y P, Yin C X, Kong L L, Qin Y B, Li Q, Wang L C. Effect of potassium application and straw returning on spring maize yield, nutrient absorption and soil potassium balance. J Plant Nutr Fert, 2014, 20: 1110-1118. (in Chinese with English abstract)
[16] 李继福, 鲁剑巍, 任涛, 丛日环, 李小坤, 周鹂, 杨文兵, 戴志刚. 稻田不同供钾能力条件下秸秆还田替代钾肥效果. 中国农业科学, 2014, 47: 292-302.
Li J F, Lu J W, Ren T, Cong R H, Li X K, Zhou P, Yang W B, Dai Z G. Effect of straw incorporation substitute for K-fertilizer under different paddy soil K supply capacities. Sci Agric Sin, 2014, 47: 292-302. (in Chinese with English abstract)
[17] Geng Y H, Cao G T, Wang L C, Wang S H. Potassium accumulation, partitioning, and remobilization in high-yield spring maize in Northeast China. J Plant Nutr, 2019, 42: 1366-1377.
doi: 10.1080/01904167.2019.1609501
[18] 孔丽丽, 侯云鹏, 李前, 尹彩侠, 秦裕波, 王蒙, 于雷, 刘志全. 吉林半干旱区基于覆膜滴灌条件下春玉米钾肥适宜用量研究. 玉米科学, 2019, 27(6): 124-130.
Kong L L, Hou Y P, Li Q, Yin C X, Qin Y B, Wang M, Yu L, Liu Z Q. Research on suitable potassium fertilizer rate of spring maize under mulched drip irrigation in semi-arid region of Jilin province. J Maize Sci, 2019, 27(6): 124-130. (in Chinese with English abstract)
[19] Zhang X F, Zhu A, Xin X L, Yang W L, Zhang J B, Ding S J. Tillage and residue management for long-term wheat-maize cropping in the north china plain: I. Crop yield and integrated soil fertility index. Field Crops Res, 2018, 221, 157-165.
[20] 王西娜, 于金铭, 谭军利, 张佳群, 魏照清, 王朝辉. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力. 中国农业科学, 2020, 53: 4891-4903.
Wang X N, Yu J M, Tan J L, Zhang J Q, Wei Z Q, Wang Z H. Requirement of nitrogen, phosphorus and potassium and potential of reducing fertilizer application of spring wheat in yellow river irrigation area of Ningxia. Sci Agric Sin, 2020, 53: 4891-4903. (in Chinese with English abstract)
[21] Fan Y F, Gao J L, Sun J Y, Liu J, Su Z J, Wang Z G, Yu X F, Hu S P. Effects of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China Inner Mongolia. Agron J, 2021, 113: 4369-4385.
doi: 10.1002/agj2.20742
[22] 张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响. 水土保持研究, 2018, 25(1): 92-98.
Zhang C, Mu P, Shang J M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait. Res Soil Water Conserv, 2018, 25(1): 92-98. (in Chinese with English abstract)
[23] Islam S, Timsina J, Salim M, Majumdar K, Gathala M K. Potassium supplying capacity of diverse soils and K-use efficiency of maize in south Asia. Agronomy, 2018, 8: 121.
doi: 10.3390/agronomy8070121
[24] 王寅, 高强, 李翠兰, 焉莉, 冯国忠, 王少杰, 刘振刚, 宋立新, 房杰. 吉林省玉米施钾增产效应及区域差异. 植物营养与肥料学报, 2019, 25: 1335-1344.
Wang Y, Gao Q, Li C L, Yan L, Feng G Z, Wang S J, Liu Z G, Song L X, Fang J. Maize yield responses to potassium fertilizer and regional differences in Jilin province. J Plant Nutr Fert, 2019, 25: 1335-1344. (in Chinese with English abstract)
[25] 谭杰, 孔凡磊, 曾晖, 袁继超. 川中丘陵春玉米适宜钾肥用量研究. 植物营养与肥料学报, 2016, 22: 838-846.
Tan J, Kong F L, Zeng H, Yuan J C. The suitable potassium fertilizer rate in spring maize in hilly area of central Sichuan Basin, China. J Plant Nutr Fert, 2016, 22: 838-846. (in Chinese with English abstract)
[26] 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国. 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, 2008, (6): 23-27.
Wang S, Yang J F, Han X R, Liu X H, Zhan X M, Liu S G. Effects of different fertilization treatments on photosynthetic characteristics of spring maize in dry farming. Soil Fert Sci China, 2008, (6): 23-27. (in Chinese with English abstract)
[27] 廖育林. 长期施用化肥和稻草下红壤性水稻土钾素肥力演变规律的研究. 湖南农业大学博士学位论文, 湖南长沙, 2010.
Liao Y L. Studies on Evolution of Potassium in Reddish Paddy Soil Under Long-term Fertilizer and Rice Straw Application. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2010. (in Chinese with English abstract)
[28] Chokri H, Ahmed D, Chedly A. Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant, 2014, 36: 1055-1077.
doi: 10.1007/s11738-014-1491-2
[29] 黄晓萌, 徐新朋, 何萍, 王秀斌, 杨兰芳, 仇少君, 赵士诚, 周卫. 长江流域冬小麦氮磷钾肥增产效应及其影响因素. 植物营养与肥料学报, 2020, 26: 1059-1068.
Huang X M, Xu X P, He P, Wang X B, Yang X F, Chou S J, Zhao S C, Zhou W. Yield response to NPK fertilization and the main impacts in production of winter wheat in Yangtze River catchments of China. J Plant Nutr Fert, 2020, 26: 1059-1068. (in Chinese with English abstract)
[30] 高志红, 陈晓远, 林昌华, 张宇鹏, 何永胜. 不同施肥水平对木薯氮磷钾养分积累、分配及其产量的影响. 中国农业科学, 2011, 44: 1637-1645.
Gao Z H, Chen X Y, Lin C H, Zhang Y P, He Y S. Effect of fertilizer application rates on cassava N, P, K accumulations and allocation and yield in sloping lands of north Guangdong. Sci Agric Sin, 2011, 44: 1637-1645. (in Chinese with English abstract)
[31] 刘彦伶, 李渝, 张雅蓉, 黄兴成, 张文安, 蒋太明. 长期氮磷钾肥配施对贵州黄壤玉米产量和土壤养分可持续性的影响. 应用生态学报, 2017, 28: 3581-3588.
doi: 10.13287/j.1001-9332.201711.026
Liu Y L, Li Y, Zhang Y R, Huang X C, Zhang W A, Jiang T M. Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China. Chin J Appl Ecol, 2017, 28: 3581-3588. (in Chinese with English abstract)
[32] 齐文增, 陈晓璐, 刘鹏, 刘惠惠, 李耕, 邵立杰, 王飞飞, 董树亭, 张吉旺, 赵斌. 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013, 19: 26-36.
Qi W Z, Chen X L, Liu P, Liu H H, Li G, Shao L J, Wang F F, Dong S T, Zhang J W, Zhao B. Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize. Plant Nutr Fert Sci, 2013, 19: 26-36. (in Chinese with English abstract)
[33] 姜涛. 氮肥运筹对夏玉米产量、品质及植株养分含量的影响. 植物营养与肥料学报, 2013, 19: 559-565.
Jiang T. Effects of nitrogen application regime on yield, quality and plant nutrient contents of summer maize. J Plant Nutr Fert, 2013, 19: 559-565. (in Chinese with English abstract)
[34] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017, 50: 1031-1046.
Wang Y H, Huang Y, Xin M H, Yuan S S, Kang G Z, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Sci Agric Sin, 2017, 50: 1031-1046. (in Chinese with English abstract)
[35] 杨恒山, 张玉芹, 徐寿军, 李国红, 高聚林, 王志刚. 超高产春玉米干物质及养分积累与转运特征. 植物营养与肥料学报, 2012, 18: 315-323.
Yang H S, Zhang Y Q, Xu S J, Li H G, Gao J L, Wang Z G. Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize. Plant Nutr Fert Sci, 2012, 18: 315-323. (in Chinese with English abstract)
[36] Ciampitti I A, Vyn T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: a review. Field Crops Res, 2012, 133: 48-67.
doi: 10.1016/j.fcr.2012.03.008
[37] 郭鑫年, 蒙静, 田旭东, 周涛, 梁锦秀, 陈刚, 孙娇, 尹志荣, 纪立东. 钾肥用量对水稻钾素分配累积、钾肥利用效率及平衡的影响. 中国土壤与肥料, 2019, (6): 154-160.
Guo X N, Meng J, Tian X D, Zhou T, Liang J X, Chen G, Sun J, Yin Z R, Ji L D. Effects of potassium application on the distribution utilization efficiency of potassium in rice and soil potassium balance. Soil Fert Sci China, 2019, (6): 154-160. (in Chinese with English abstract)
[38] 李文娟, 何萍, 金继运. 钾素营养对玉米生育后期干物质和养分积累与转运的影响. 植物营养与肥料学报, 2009, 15: 799-807.
Li W J, He P, Jin J Y. Potassium nutrition on dry matter and nutrients accumulation and translocation at reproductive stage of maize. Plant Nutr Fert Sci, 2009, 15: 799-807. (in Chinese with English abstract)
[39] Liu T N, Huang R D, Cai T. Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density. Sci Rep, 2017, 7: 39601.
doi: 10.1038/srep39601 pmid: 28084467
[40] 谭杰, 孔凡磊, 曾晖, 袁继超. 川中丘陵春玉米适宜钾肥用量研究. 植物营养与肥料学报, 2016, 22: 838-846.
Tan J, Kong F L, Zeng H, Yuan J C. The suitable potassium fertilizer rate in spring maize in hilly area of central Sichuan Basin, China. J Plant Nutr Fert, 2016, 22: 838-846. (in Chinese with English abstract)
[1] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[2] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[3] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[4] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[5] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[6] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[7] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[8] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[11] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[12] ZHU Ya-Di, WANG Hui-Qin, WANG Hong-Zhang, REN Hao, LYU Jian-Hua, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, YIN Fu-Wei, LIU Peng. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage [J]. Acta Agronomica Sinica, 2022, 48(12): 3130-3143.
[13] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[14] SONG Jie, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LI Liang, WANG Shao-Xiang, HUANG Jin-Ling, LIU Peng. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2908-2919.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!