Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1480-1495.doi: 10.3724/SP.J.1006.2023.24113
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Jia1,**(), ZOU Xiao-Yue1,2,**(), MA Ji-Fang1, WANG Yong-Fang1, DONG Zhi-Ping1, LI Zhi-Yong1,*(), BAI Hui1,*()
[1] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266 |
[2] |
Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and developmental biology of plant mitogen-activated protein kinases. Annu Rev Plant Biol, 2018, 69: 237-265.
doi: 10.1146/annurev-arplant-042817-040314 pmid: 29489398 |
[3] | Chen J, Wang L, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 2: 1679. |
[4] |
Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529 |
[5] |
Wang G, Wang T, Jia Z H, Xuan J P, Pan D L, Guo Z R, Zhang J Y. Genome-wide bioinformatics analysis of MAPK gene family in Kiwifruit (Actinidia chinensis). Int J Mol Sci, 2018, 19: 2510.
doi: 10.3390/ijms19092510 |
[6] |
MAPK Group. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167 |
[7] |
Jonak C, Okrész L, Bögre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol, 2002, 5: 415-424.
doi: 10.1016/S1369-5266(02)00285-6 |
[8] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[9] |
Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530 |
[10] |
Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744 |
[11] | Liu Y K, Zhang D, Wang L, Li D Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 2013, 316: 1446-1460. |
[12] |
Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20: 750.
doi: 10.1186/s12864-019-6144-9 pmid: 31623562 |
[13] |
Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes (Basel), 2017, 8: 284.
doi: 10.3390/genes8100284 |
[14] |
Pedley K F, Martin G B. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol, 2005, 8: 541-547.
pmid: 16043387 |
[15] |
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109 |
[16] |
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002 |
[17] |
Bush S M, Krysan P J. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot, 2007, 58: 2181-2191.
doi: 10.1093/jxb/erm092 |
[18] |
Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015, 84: 672-681.
doi: 10.1111/tpj.2015.84.issue-4 |
[19] | Liu X, Li J, Noman A, Lou Y. Silencing OsMAPK20-5has different effects on rice pests in the field. Plant Signal Behav, 2019, 14: e1640562. |
[20] |
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714 pmid: 12615946 |
[21] |
Hong Y, Liu Q, Cao Y, Zhang Y, Chen D, Lou X, Cheng S, Cao L. The OsMPK15negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Front Plant Sci, 2019, 10: 752.
doi: 10.3389/fpls.2019.00752 |
[22] |
Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857 |
[23] |
Liu X, Li J, Xu L, Wang Q, Lou Y. Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. Int J Mol Sci, 2018, 19: 1182.
doi: 10.3390/ijms19041182 |
[24] |
贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
|
[25] |
刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
doi: 10.3864/j.issn.0578-1752.2019.22.001 |
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.001 |
|
[26] |
李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 459-470.
doi: 10.3864/j.issn.0578-1752.2021.03.001 |
Li S G, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54: 459-470. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.001 |
|
[27] |
赵立强, 潘文嘉, 马继芳, 瓮巧云, 董立, 全建章, 邢继红, 董志平, 董金皋. 一个谷子新抗锈基因的AFLP标记. 中国农业科学, 2010, 43: 4349-4355.
doi: 10.3864/j.issn.0578-1752.2010.21.003 |
Zhao L Q, Pan W J, Ma J F, Weng Q Y, Dong L, Quan J Z, Xing J H, Dong Z P, Dong J G. Identification of AFLP markers linked to a novel rust resistance gene in foxtail millet. Sci Agric Sin, 2010, 43: 4349-4355. (in Chinese with English abstract) | |
[28] | 董立, 马继芳, 董志平. 谷子病虫草害防治原色生态图谱. 北京: 中国农业出版社, 2013. pp 3-6. |
Dong L, Ma J F, Dong Z P. Foxtail Millet Disease Pest and Weed Prevention Atlas. Beijing: China Agriculture Press, 2013. pp 3-6. (in Chinese) | |
[29] | 梁克恭, 刘维, 王雅儒, 冯凌云, 崔光先, 宋燕春, 武小菲, 郑桂春, 董志平. 粟品种资源抗粟锈病鉴定研究. 沈阳农业大学学报, 1992, 23(1): 13-18. |
Liang K G, Liu W, Wang Y R, Feng L Y, Cui G X, Song Y C, Wu X F, Zheng G C, Dong Z P. Rust resistance evaluation for millet varieties. J Shenyang Agric Univ, 1992, 23(1): 13-18. (in Chinese with English abstract) | |
[30] |
白辉, 宋振君, 王永芳, 全建章, 马继芳, 刘磊, 李志勇, 董志平. 谷子抗锈病反应相关MYB转录因子的鉴定与表达. 中国农业科学, 2019, 52: 4016-4027.
doi: 10.3864/j.issn.0578-1752.2019.22.007 |
Bai H, Song Z J, Wang Y F, Quan J Z, Ma J F, Liu L, Li Z Y, Dong Z P. Identification and expression analysis of MYB transcription factors related to rust resistance in foxtail millet. Sci Agric Sin, 2019, 52: 4016-4027. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.007 |
|
[31] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[32] |
Mohanta T K, Arora P K, Mohanta N, Parida P, Bae H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics, 2015, 16: 58.
doi: 10.1186/s12864-015-1244-7 pmid: 25888265 |
[33] |
Singh A, Nath O, Singh S, Kumar S, Singh I K. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene, 2017, 13: 25-35.
doi: 10.1016/j.plgene.2017.12.001 |
[34] |
Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 2022, 114: 110311.
doi: 10.1016/j.ygeno.2022.110311 |
[35] |
Yao Y, Zhao H, Sun L, Wu W, Li C, Wu Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genomics, 2022, 23: 96.
doi: 10.1186/s12864-022-08293-2 |
[36] |
Ali A, Chu N, Ma P, Javed T, Zaheer U, Huang M T, Fu H Y, Gao S J. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. Physiol Plant, 2021, 171: 86-107.
doi: 10.1111/ppl.v171.1 |
[37] |
Zhang X, Xu X, Yu Y, Chen C, Wang J, Cai C, Guo W. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton. Sci Rep, 2016, 6: 29781.
doi: 10.1038/srep29781 pmid: 27417377 |
[38] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[39] |
Goyal R K, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis B E, Frick M, Laroche A, Foroud N A. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics, 2018, 19: 178.
doi: 10.1186/s12864-018-4545-9 pmid: 29506469 |
[40] |
Xiao X, Tang Z, Li X, Hong Y, Li B, Xiao W, Gao Z, Lin D, Li C, Luo L, Niu X, He C, Chen Y. Overexpressing OsMAPK12-1 inhibits plant growth and enhances resistance to bacterial disease in rice. Funct Plant Biol, 2017, 44: 694-704.
doi: 10.1071/FP16397 |
[41] |
Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Mol Plant Pathol, 2018, 19: 1624-1638.
doi: 10.1111/mpp.2018.19.issue-7 |
[1] | CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
|