Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1480-1495.doi: 10.3724/SP.J.1006.2023.24113

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet

LIU Jia1,**(), ZOU Xiao-Yue1,2,**(), MA Ji-Fang1, WANG Yong-Fang1, DONG Zhi-Ping1, LI Zhi-Yong1,*(), BAI Hui1,*()   

  1. 1Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang 050035, Hebei, China
    2College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2022-05-05 Accepted:2022-07-21 Online:2023-06-12 Published:2022-08-09
  • Contact: *E-mail: lizhiyongds@126.com;E-mail: baihui_mbb@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research & Development Program of China(2018YFD1000703);National Key Research & Development Program of China(2018YFD1000700);Natural Science Foundation of China(31872880);HAAFS Basic Science and Technology Contract Project(HBNKY-BGZ-02);China Agriculture Research System of MOF and MARA(CARS-06-14.5-A25);Hebei Key Research & Development Program(21326338D)

Abstract:

MAPK plays an important role in plant growth and development regulation, biotic and abiotic stress responses, and hormone signal transduction. In order to elucidate the biological function of the SiMPK genes in foxtail millet, we identified the SiMPK family members in the genome and analyzed the distribution, structure, evolution, and its expression characteristics in response to different stresses. In this study, the SiMPK gene family members were identified in the genome-wide level using the amino acid sequences of conserved domains and specific TXY motifs of MAPK proteins between foxtail millet and rice. The protein physicochemical property, phylogenetic evolution, chromosome distribution, gene structure, protein conserved motif, promoter cis-acting regulatory elements, and collinearity were analyzed. The relative expression patterns of SiMPK genes in the different tissue, under the biotic stresses of Uromyces setariae-italicae Yoshino and Ostrinia furnacalis and with different hormone treatments were analyzed by qRT-PCR. The results showed that a total of 15 SiMPK genes were identified, and the encoded proteins contained 220-611 amino acids, the relative molecular weight ranged from 25.77 kD to 69.63 kD, and the isoelectric point ranged from 5.46 to 9.34. Phylogenetic analysis showed that SiMPK genes were divided into four groups. Group A, B, and C contained TEY motifs, and group D contained TDY motifs. SiMPK genes were distributed on chromosomes 1, 3, 4, 5, 8, and 9, and contained 3-11 exons. All SiMPK proteins contained motif 1 and motif 2. A number of cis-acting elements related to stress, hormones and plant growth and development were predicted in the promoter regions of the SiMPK genes. Most genes had obvious tissue expression specificity. Except for SiMPK21-2 and SiMPK6, the other members had obvious responses to 1 to 3 kinds of stresses, such as Uromyces setariae-italicae Yoshino infection, Ostrinia furnacalis feeding, and SA and MeJA treatments. The results laid a theoretical foundation for further research on the function of SiMPK genes in the biotic stresses of disease and pest in foxtail millet.

Key words: foxtail millet (Setaria italica), MAPK gene family, Uromyces setariae-italicae Yoshino, Ostrinia furnacalis, relative expression analysis

Table 1

List of qRT-PCR primers"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
SiActin_F CGCATATGTGGCTCTTGACT GGGCACCTAAATCTCTCTGC
SiMPK3 AGCGACATGATGACGGAGTA TAGTCGGTGGAGTTGAGCAG
SiMPK4-1 GTGCAGTCGATTTGTTGGAG ATGCAGAGCCTCATCAACTG
SiMPK4-2 CAGCACGACCAGAAGAAGAA TATGGGTGTCCAGAGCAGAG
SiMPK4-3 AATCAGAGATGATGCACGGA TAACGCTCTGCAGAACCAAC
SiMPK6 ATGAGCCTGTCTGCTCAATG TTGTTCTTCGGACAGTGCAT
SiMPK7 TGTACCCACAAGCACATCCT CAGAGCCTCGGTGACACTAA
SiMPK14 TGTGCCTATCAAGCCCATAG CTTAGTGCATCCACACGGTT
SiMPK17-1 ACGGATTATGTGGCAACAAG TCAGCAAATATGCACCCAAT
SiMPK17-2 CTTCCAGATGCGCTATCAAA CACCCTGGGTACCTTGTCTAA
SiMPK20-1 TTGCAGGCTGAAAGGTACAC TCATGTCCAGAGCAACATCA
SiMPK20-2 TTCGGTGGGAGATCTGGTG TCTGTCGAGTGTGCAGATCA
SiMPK20-4 CCAAGTCATCAAGGCAAATG TTCTTTGGCTTCAAATCACG
SiMPK20-5 GTCGCCGATCAACACATTAC CCGGTCTTTCTCAAGCTCTC
SiMPK21-1 GAAAGCATCAGTGCTTCCAA AGCGATCTTCTTCGACACCT
SiMPK21-2 GACCCAATGGCTCTTCATTT GTGTTATAGGCTCGCGTTCA

Table 2

Characteristics of the 15 SiMPKs in foxtail millet"

基因名称
Gene name
基因编号
Gene ID
氨基酸数目
Number of amino acids (aa)
分子量
Molecular weight (kD)
等电点
Isoelectric point (pI)
亚细胞定位
Subcellular
location
信号肽
Signal
peptide
SiMPK3 Seita.9G444100 375 42.43 5.46 C 无 No
SiMPK4-1 Seita.9G344000 372 42.29 5.96 C 无 No
SiMPK4-2 Seita.3G058000 557 63.46 8.83 N 无 No
SiMPK4-3 Seita.8G104500 535 61.17 8.79 C 无 No
SiMPK6 Seita.4G069900 347 39.13 5.71 C 无 No
SiMPK7 Seita.4G243400 369 42.34 6.63 N 无 No
SiMPK14 Seita.1G089400 370 42.41 6.53 N 无 No
SiMPK17-1 Seita.4G273900 574 65.25 6.64 N 无 No
SiMPK17-2 Seita.1G095300 506 57.85 7.67 N 无 No
SiMPK20-1 Seita.5G235700 611 69.63 9.14 N 无 No
SiMPK20-2 Seita.3G131800 220 25.77 9.17 C 无 No
SiMPK20-4 Seita.5G261300 589 67.37 9.34 N 无 No
SiMPK20-5 Seita.3G145200 591 67.26 9.20 N 无 No
SiMPK21-1 Seita.3G136100 590 66.86 6.74 C 无 No
SiMPK21-2 Seita.5G241700 508 57.77 7.64 C 无 No

Fig. 1

Phylogenic tree of MAPK gene families in Setaria italica, Oryza sativa, and Arobidopsis thaliana Si: Setaria italica: Os: Oryza sativa: At: Arobidopsis thaliana."

Fig. 2

Distributions of SiMPKs on nine chromosomes in foxtail millet"

Fig. 3

Structure and conserved motif of SiMPKs genes in foxtail millet Motif: conserved base sequence; UTR: untranslated region; CDS: coding region sequence."

Fig. 4

Sequence Logo of the SiMPKs protein motifs in foxtail millet"

Fig. 5

Cis-acting elements in the promoter regions of 15 SiMPKs in foxtail millet"

Fig. 6

Collinearity analysis of the MAPK gene family in foxtail millet"

Fig. 7

Collinearity analysis of the MAPK genes between Setaria italica and Oryza sativa"

Fig. 8

Relative expression level of SiMPK genes in the different parts of foxtail millet SD: seedling stage; BT: booting stage; shoot: the aboveground part at seedling stage; root: the underground part at seedling stage or root at booting stage. The different letters mean significant difference at the 0.05 probability level."

Fig. 9

Expression analysis of SiMPK genes in Setaria italica leaves inoculated with Uromyces setariae-italicae * represents that the relative expression levels of genes in disease-resistant and disease-sensitive reactions at the same time point are significantly different at the probability level of 0.05."

Fig. 10

Expression analysis of SiMPK genes in Setaria italica leaves fed by Ostrinia furnacalis * represents that the relative expression levels of genes in the leaves at different time points after being fed by Ostrinia furnacalis are significantly different at the probability level of 0.05 compared with 0 h. **: P < 0.01; ***: P < 0.001."

Fig. 11

Expression analysis of SiMPK genes in Setaria italica leaves treated with SA and MeJA * represents that the relative expression levels of genes in the leaves at different time points after SA/JA treatment are significantly different at the probability level of 0.05 compared with 0 h; **: P < 0.01; ***: P < 0.001."

[1] Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45: 1-10.
doi: S1369-5266(17)30213-3 pmid: 29753266
[2] Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and developmental biology of plant mitogen-activated protein kinases. Annu Rev Plant Biol, 2018, 69: 237-265.
doi: 10.1146/annurev-arplant-042817-040314 pmid: 29489398
[3] Chen J, Wang L, Yuan M. Update on the roles of rice MAPK cascades. Int J Mol Sci, 2021, 2: 1679.
[4] Rodriguez M C, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010, 61: 621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529
[5] Wang G, Wang T, Jia Z H, Xuan J P, Pan D L, Guo Z R, Zhang J Y. Genome-wide bioinformatics analysis of MAPK gene family in Kiwifruit (Actinidia chinensis). Int J Mol Sci, 2018, 19: 2510.
doi: 10.3390/ijms19092510
[6] MAPK Group. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167
[7] Jonak C, Okrész L, Bögre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol, 2002, 5: 415-424.
doi: 10.1016/S1369-5266(02)00285-6
[8] Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J, 2008, 413: 217-226.
doi: 10.1042/BJ20080625 pmid: 18570633
[9] Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530
[10] Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPK gene families in Brachypodium distachyon. PLoS One, 2012, 7: e46744.
doi: 10.1371/journal.pone.0046744
[11] Liu Y K, Zhang D, Wang L, Li D Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep, 2013, 316: 1446-1460.
[12] Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics, 2019, 20: 750.
doi: 10.1186/s12864-019-6144-9 pmid: 31623562
[13] Zhan H, Yue H, Zhao X, Wang M, Song W, Nie X. Genome-wide identification and analysis of MAPK and MAPKK gene families in bread wheat (Triticum aestivum L.). Genes (Basel), 2017, 8: 284.
doi: 10.3390/genes8100284
[14] Pedley K F, Martin G B. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol, 2005, 8: 541-547.
pmid: 16043387
[15] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci, 2015, 20: 56-64.
doi: 10.1016/j.tplants.2014.10.001 pmid: 25457109
[16] Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 2013, 51: 245-266.
doi: 10.1146/annurev-phyto-082712-102314 pmid: 23663002
[17] Bush S M, Krysan P J. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot, 2007, 58: 2181-2191.
doi: 10.1093/jxb/erm092
[18] Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015, 84: 672-681.
doi: 10.1111/tpj.2015.84.issue-4
[19] Liu X, Li J, Noman A, Lou Y. Silencing OsMAPK20-5has different effects on rice pests in the field. Plant Signal Behav, 2019, 14: e1640562.
[20] Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714 pmid: 12615946
[21] Hong Y, Liu Q, Cao Y, Zhang Y, Chen D, Lou X, Cheng S, Cao L. The OsMPK15negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Front Plant Sci, 2019, 10: 752.
doi: 10.3389/fpls.2019.00752
[22] Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857
[23] Liu X, Li J, Xu L, Wang Q, Lou Y. Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. Int J Mol Sci, 2018, 19: 1182.
doi: 10.3390/ijms19041182
[24] 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55: 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003
Jia G Q, Diao X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Sci Agric Sin, 2022, 55: 653-665. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.04.003
[25] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
doi: 10.3864/j.issn.0578-1752.2019.22.001
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.001
[26] 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 459-470.
doi: 10.3864/j.issn.0578-1752.2021.03.001
Li S G, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54: 459-470. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.03.001
[27] 赵立强, 潘文嘉, 马继芳, 瓮巧云, 董立, 全建章, 邢继红, 董志平, 董金皋. 一个谷子新抗锈基因的AFLP标记. 中国农业科学, 2010, 43: 4349-4355.
doi: 10.3864/j.issn.0578-1752.2010.21.003
Zhao L Q, Pan W J, Ma J F, Weng Q Y, Dong L, Quan J Z, Xing J H, Dong Z P, Dong J G. Identification of AFLP markers linked to a novel rust resistance gene in foxtail millet. Sci Agric Sin, 2010, 43: 4349-4355. (in Chinese with English abstract)
[28] 董立, 马继芳, 董志平. 谷子病虫草害防治原色生态图谱. 北京: 中国农业出版社, 2013. pp 3-6.
Dong L, Ma J F, Dong Z P. Foxtail Millet Disease Pest and Weed Prevention Atlas. Beijing: China Agriculture Press, 2013. pp 3-6. (in Chinese)
[29] 梁克恭, 刘维, 王雅儒, 冯凌云, 崔光先, 宋燕春, 武小菲, 郑桂春, 董志平. 粟品种资源抗粟锈病鉴定研究. 沈阳农业大学学报, 1992, 23(1): 13-18.
Liang K G, Liu W, Wang Y R, Feng L Y, Cui G X, Song Y C, Wu X F, Zheng G C, Dong Z P. Rust resistance evaluation for millet varieties. J Shenyang Agric Univ, 1992, 23(1): 13-18. (in Chinese with English abstract)
[30] 白辉, 宋振君, 王永芳, 全建章, 马继芳, 刘磊, 李志勇, 董志平. 谷子抗锈病反应相关MYB转录因子的鉴定与表达. 中国农业科学, 2019, 52: 4016-4027.
doi: 10.3864/j.issn.0578-1752.2019.22.007
Bai H, Song Z J, Wang Y F, Quan J Z, Ma J F, Liu L, Li Z Y, Dong Z P. Identification and expression analysis of MYB transcription factors related to rust resistance in foxtail millet. Sci Agric Sin, 2019, 52: 4016-4027. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.22.007
[31] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[32] Mohanta T K, Arora P K, Mohanta N, Parida P, Bae H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics, 2015, 16: 58.
doi: 10.1186/s12864-015-1244-7 pmid: 25888265
[33] Singh A, Nath O, Singh S, Kumar S, Singh I K. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene, 2017, 13: 25-35.
doi: 10.1016/j.plgene.2017.12.001
[34] Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 2022, 114: 110311.
doi: 10.1016/j.ygeno.2022.110311
[35] Yao Y, Zhao H, Sun L, Wu W, Li C, Wu Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genomics, 2022, 23: 96.
doi: 10.1186/s12864-022-08293-2
[36] Ali A, Chu N, Ma P, Javed T, Zaheer U, Huang M T, Fu H Y, Gao S J. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. Physiol Plant, 2021, 171: 86-107.
doi: 10.1111/ppl.v171.1
[37] Zhang X, Xu X, Yu Y, Chen C, Wang J, Cai C, Guo W. Integration analysis of MKK and MAPK family members highlights potential MAPK signaling modules in cotton. Sci Rep, 2016, 6: 29781.
doi: 10.1038/srep29781 pmid: 27417377
[38] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[39] Goyal R K, Tulpan D, Chomistek N, González-Peña Fundora D, West C, Ellis B E, Frick M, Laroche A, Foroud N A. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics, 2018, 19: 178.
doi: 10.1186/s12864-018-4545-9 pmid: 29506469
[40] Xiao X, Tang Z, Li X, Hong Y, Li B, Xiao W, Gao Z, Lin D, Li C, Luo L, Niu X, He C, Chen Y. Overexpressing OsMAPK12-1 inhibits plant growth and enhances resistance to bacterial disease in rice. Funct Plant Biol, 2017, 44: 694-704.
doi: 10.1071/FP16397
[41] Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Mol Plant Pathol, 2018, 19: 1624-1638.
doi: 10.1111/mpp.2018.19.issue-7
[1] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .