Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1665-1675.doi: 10.3724/SP.J.1006.2025.43051

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas

YAN Shang-Long,WANG QI-Ming,CHAI Qiang*,YIN Wen,FAN Zhi-Long,HU Fa-Long,LIU Zhi-Peng,WEI Jin-Gui   

  1. State Key Laboratory of Aridland Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-11-12 Revised:2025-03-26 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-07
  • Supported by:
    This study was supported by the Major Science and Technology Project of Gansu Province (24ZDNA008), the National Natural Science Foundation of China (U21A20218, 32372238), the China Agriculture Research System of MOF and MARA (CARS-22-G-12), and the Science and Technology Program of Gansu Province (22JR5RA839).

Abstract:

To address the decline in maize grain quality caused by increased planting density in oasis irrigation areas, this study examines the effects of intercropping pea on maize grain quality under different planting densities, aiming to provide theoretical and practical guidance for optimizing high-yield, high-quality maize cultivation systems. A split-plot experiment was conducted from 2020 to 2021, with monocropped maize (M) and intercropped maize with pea (M||P) as the main plots, and different maize planting densities as subplots: for monocropping, 78,000 plants per hectare (M1, low density), 103,500 plants per hectare (M2, medium density), and 129,000 plants per hectare (M3, high density); for intercropping, 45,000 plants per hectare (M1||P, low density), 60,000 plants per hectare (M2||P, medium density), and 75,000 plants per hectare (M3||P, high density). The results showed that increasing planting density significantly improved maize grain yield and biological yield, while intercropping with pea further enhanced these effects. Among the intercropping treatments, medium-density maize (M2||P) achieved the highest grain and biological yields, increasing by 34.6%–36.6% and 30.0%–39.3%, respectively, compared to low-density monocropped maize. As planting density increased, starch content in maize grains significantly increased, whereas protein and fat contents significantly decreased, with the total yield of nutritional components first increasing and then declining. Intercropping with pea significantly improved maize grain nutritional content and total nutritional yield, enhanced the positive effect of higher planting density on grain starch content and total nutritional yield, mitigated the negative impact of increased density on protein content, and reduced the decline in total nutritional yield observed at high density compared to medium density. Higher planting density significantly reduced the content of phenylalanine, leucine, isoleucine, and valine in maize grains while significantly increasing tryptophan and lysine concentrations; intercropping significantly increased phenylalanine, leucine, isoleucine, and valine levels and alleviated the reduction in phenylalanine and leucine content caused by increased planting density, with the best effects observed under medium-density intercropping (M2||P). Overall, both increased planting density and intercropping significantly improved the comprehensive performance of maize, with the best overall performance achieved by intercropping pea and a maize planting density of 60,000 plants per hectare (M2||P), yielding a performance score of 0.47. This planting model maximizes grain yield while enhancing grain quality, making it a feasible and effective cultivation strategy for improving maize production in the Hexi Oasis irrigation area.

Key words: densification, maize intercropped with pea, seed yield, nutrient content, seed nutrient quality yield

[1] Shiferaw B, Prasanna B M, Hellin J, Bänziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur, 2011, 3: 307–327.

[2] Edgerton M D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol, 2009, 149: 7–13.

[3] Detweiler K B, He F, Mangian H F, Davenport G M, de Godoy M R C. Extruded feline diets formulated with high inclusion of soybean hulls: effects on apparent total tract macronutrient digestibility, and fecal quality and metabolites. J Anim Sci, 2019, 97: 1042–1051.

[4]  Palacios-Rojas N, McCulley L, Kaeppler M, Titcomb T J, Gunaratna N S, Lopez-Ridaura S, Tanumihardjo S A. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr Rev Food Sci Food Saf, 2020, 19: 1809–1834.

[5]  Andorf C, Beavis W D, Hufford M, Smith S, Suza W P, Wang K, Woodhouse M, Yu J M, Lübberstedt T. Technological advances in maize breeding: past, present and future. Theor Appl Genet, 2019, 132: 817–849.

[6] Cairns J E, Sonder K, Zaidi P H, Verhulst N, Mahuku G, Babu R, Nair S K, Das B, Govaerts B, Vinayan M T, et al. Chapter one maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron, 2012, 114: 1–58.

[7]  Li N, Song D J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17: 736–749.

[8]  Karasu A, Kușcu H, Mehmet Ö, Bayram G. The effect of different irrigation water levels on grain yield, yield components and some quality parameters of silage maize (Zea mays in dentata Sturt.). Not Bot Horti Agrobo, 2015, 43: 138–145.

[9] Zhang Q, Zhang L Z, Evers J, van der Werf W, Zhang W Q, Duan L S. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Res, 2014, 164: 82–89.

[10] 赵建华, 孙建好, 李隆, 李伟绮. 改变玉米行距种植对豌豆/玉米间作体系产量的影响. 中国生态农业学报 (中英文), 2012, 20: 1451–1456.

Zhao J H, Sun J H, Li L, Li W Q. Effect of maize row spacing on yield of pea/maize intercropping system. Chin J Eco-Agric, 2012, 20: 1451–1456 (in Chinese with English abstract).

[11] 张宇. 不同平作种植模式对玉米叶部性状和产量及品质的影响. 黑龙江农业科学, 2019, (11): 19–23. 

Zhang Y. Effects of different flatten planting patterns on leaf traits and yield and grain quality of maize. Heilongjiang Agric Sci, 2019, (11): 19–23 (in Chinese with English abstract). 

[12]  马紫微, 李武. 不同播期对华南鲜食糯玉米产量及品质的影响. 广东农业科学, 2023, 50(5): 2129.

Ma Z W, Li W. Effects of different sowing periods on yield and quality of fresh glutinous maize in South China. Guangdong Agric Sci, 2023, 50(5): 2129 (in Chinese with English abstract). 

[13] 赵花荣, 周广胜, 齐月, 耿金剑, 田晓丽. 播期调整对华北北部冬小麦、夏玉米产量和品质的影响. 中国农业科学, 2024, 57: 2964–2985. 

Zhao H R, Zhou G S, Qi Y, Geng J J, Tian X L. Effects of sowing date adjustment on yield and quality of winter wheat and summer maize in northern area of North China. Sci Agric Sin, 2024, 57: 2964–2985 (in Chinese with English abstract).

[14] 黄鑫, 佟玲, 康德奎, 何玉江, 王万祯, 杨胜举. 种植密度和水分胁迫对玉米灌浆特性与源库关系的影响. 灌溉排水学报, 2022, 41(6): 1220.

Huang X, Tong L, Kang D K, He Y J, Wang W Z, Yang S J. The combined effect of planting density and water stress on grain traits of maize. J Irrig Drain, 2022, 41(6): 1220 (in Chinese with English abstract).

[15] Xu C L, Huang S B, Tian B J, Ren J H, Meng Q F, Wang P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production. Front Plant Sci, 2017, 8: 1234.

[16] 程建梅, 赵树政, 杨美丽, 苏玉杰, 王帮太, 鹿红卫, 秦贵文. 种植密度对玉米品种植株及籽粒相关性状的影响. 中国农学通报, 2022, 38(18): 20–27.

Cheng J M, Zhao S Z, Yang M L, Su Y J, Wang B T, Lu H W, Qin G W. Planting density of maize: effects on plant and kernel related characters of different varieties. Chin Agric Sci Bull, 2022, 38(18): 2027 (in Chinese with English abstract).

[17] 王晓梅, 崔坤, 宋利润. 不同密度与玉米生长发育及品质相关性的研究. 吉林农业科学, 2006, 31(3): 3–6.

Wang X M, Cui K, Song L R. Studies on correlation between plant density and growth and quality of maize. J Jilin Agric Sci, 2006, 31(3): 3–6 (in Chinese with English abstract).

[18] Baghdadi A, Halim R A, Majidian M, Wan N, Wan D, Izham A. Plant density and tillage effects on forage corn quality. J Food Agric Environ, 2012, 10: 366–370.

[19] 黄兴辉. 玉米种植密度对产量和品质的影响. 农业与技术, 2015, 35(16): 155–156.

Huang X H. Effect of maize planting density on yield and quality. Agric Technol, 2015, 35(16): 155–156 (in Chinese with English abstract).

[20] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res, 2020, 257: 107926.

[21] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量. 作物学报, 2021, 47: 2481–2489.

Zhang J D, Fan H, Du J Y, Yin W, Fan Z L, Hu F L, Chai Q. Synchronously higher planting density can increase yield via optimizing inter-specific interaction of intercropped wheat and maize. Acta Agron Sin, 2021, 47: 2481–2489 (in Chinese with English abstract).

[22] 任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报(中英文), 2019, 27: 860–869.

Ren X L, Teng Y Y, Wang Y F, Yin W, Chai Q. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chin J Eco-Agric, 2019, 27: 860–869 (in Chinese with English abstract).

[23] 刘天学, 李潮海, 马新明, , 士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响. 植物生态学报, 2008, 32: 914–921.

Liu T X, Li C H, Ma X M, Zhao X, Liu S Y. Effects of maize intercropping with different genotypes on leaf senescence and grain yield and quality. J Plant Ecol, 2008, 32: 914–921 (in Chinese with English abstract).

[24] 沈其荣, 褚贵新, 曹金留, 曹云, 晓燕. 素营养的角度分析旱作水稻与花生间作系统的产量优势. 中国农业科学, 2004, 37: 1177–1182.

Shen Q R, Chu G X, Cao J L, Cao Y, Yin X Y. Yield advantage of groundnut intercropped with rice cultivated in aerobic soil from the viewpoint of plant nitrogen nutrition. Sci Agric Sin, 2004, 37: 1177–1182 (in Chinese with English abstract).

[25] Li L, Yang S C, Li X L, Zhang F S, Christie P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil, 1999, 212: 105–114. 

[26] 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现. 核农学报, 2020, 34: 1302–1310.

Zhang X J, Wei T B, Fan Z L, Chai Q. Photosynthetic source dynamics and yield performance of high density maize with reduced amount of water and nitrogen in oasis irrigation region. J Nucl Agric Sci, 2020, 34: 1302–1310 (in Chinese with English abstract).

[27] 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响. 草业学报, 2023, 32(3): 13–29.

Wang M J, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area. Acta Pratac Sin, 2023, 32(3): 13–29 (in Chinese with English abstract).

[28尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应. 中国农业科学, 2023, 56: 1708–1717.

Wei Y N, Bo Q F, Tang A, Gao J R, Ma T, Wei X X, Zhang F F, Zhou X L, Yue S C, Li S Q. Effects of long-term film mulching and application of organic fertilizer on yield and quality of spring maize on the Loess Plateau. Sci Agric Sin, 2023, 56: 1708–1717 (in Chinese with English abstract).

[29蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, . 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625–4632.

Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625–4632 (in Chinese with English abstract).

[30华劲松. 种植密度对间作芸豆群体冠层结构及产量的影响. 作物杂志, 2012, (5): 131–135.

Hua J S. Effects of density on canopy structure and yield of kidney bean-corn intercropping pattern. Crops, 2012, (5): 131–135 (in Chinese with English abstract).

[31] Hu F L, Tan Y, Yu A Z, Zhao C, Fan Z L, Yin W, Chai Q, Coulter J A, Cao W D. Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas. Eur J Agron, 2020, 119: 126117.

[32] Lithourgidis, Dordas, Damalas, Vlachostergios. Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci, 2011, 5: 396–410.

[33] Gou F, van Ittersum M K, Wang G Y, van der Putten P E L, van der Werf W. Yield and yield components of wheat and maize in wheat–maize intercropping in the Netherlands. Eur J Agron, 2016, 76: 17–27.

[34] Yin W, Chen G P, Feng F X, Guo Y, Hu F L, Chen G D, Zhao C, Yu A Z, Chai Q. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res, 2017, 204: 4251.

[35] Yin W, Chai Q, Zhao C, Yu A Z, Fan Z L, Hu F L, Fan H, Guo Y, Coulter J A. Water utilization in intercropping: a review. Agric Water Manag, 2020, 241: 106335.

[36赵建华, 孙建好, 陈亮之, 李伟绮. /豆间作产量优势中补偿效应和选择效应的角色. 作物学报, 2022, 48: 2588–2596.

Zhao J H, Sun J H, Chen L Z, Li W Q. Role of complementarity and select effect for yield advantage of maize/legumes intercropping systems. Acta Agron Sin, 2022, 48: 2588–2596 (in Chinese with English abstract).

[37蒋紫薇, 刘桂宇, 安昊云, 石薇, 常生华, 张程, 贾倩民, 扶江. 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响. 草业学报, 2022, 31(7): 157–171.

Jiang Z W, Liu G Y, An H Y, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system. Acta Pratac Sin, 2022, 31(7): 157–171 (in Chinese with English abstract). 

[38赵建华, 孙建好, 陈亮之, 李伟绮, 曹素珍, 谷科强. 玉米与不同豆科作物间作对氮素的竞争与恢复效应. 植物营养与肥料学报, 2023, 29: 640–650.

Zhao J H, Sun J H, Chen L Z, Li W Q, Cao S Z, Gu K Q. Nitrogen competition and recovery effects of maize in different maize/legumes intercropping systems. J Plant Nutr Fert, 2023, 29: 640–650 (in Chinese with English abstract).

[39] Prasanna B, Vasal S, Kassahun B, Singh N. Quality protein maize. Curr Sci, 2015, 81: 1308–1319.

[40张桂国, 杨在宾, 董树亭. 苜蓿+玉米间作系统饲料生产潜力的评定. 草业学报, 2011, 20(2): 117–126. 

       Zhang G G, Yang Z B, Dong S T. An evaluation of forage potential of an alfalfa+maize intercropping system. Acta Pratac Sin, 2011, 20(2): 117–126 (in Chinese with English abstract).

[41] Sauberlich H E, Chang W Y, Salmon W D. The amino acid and protein content of corn as related to variety and nitrogen fertilization. J Nutr, 1953, 51: 241–250.

[42] Lawlor D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot, 2002, 53: 773–787.

[1] CUI Xin, GU He-He, SONG Yi, ZHANG Zhe, LIU Shi-Shi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effects of potassium fertilizer application rates on rapeseed yield and potassium absorption and yield reduction caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(6): 0-.
[2] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[3] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[4] QIN Wen-Jie, GUO Run-Ze, ZOU Xiao-Xia, ZHANG Xiao-Jun, YU Xiao-Na, WANG Yue-Fu, SI Tong. Effects of drip irrigation and topdressing on dry matter weight, mineral nutrient absorption and yield of pod-bearing stage in peanut [J]. Acta Agronomica Sinica, 2021, 47(3): 520-529.
[5] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[6] Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948.
[7] WANG Yin,LU Jian-Wei,LI Xiao-Kun,REN Tao,CONG Ri-Huan,ZHAN Li-Ping. Effects of Nitrogen, Phosphorus, Potassium, and Boron Fertilizers on Winter Oilseed Rape (Brassica napus L.) Direct-sown in the Yangtze River Basin [J]. Acta Agron Sin, 2013, 39(08): 1491-1500.
[8] ZHANG Ying-Hua;ZHOU Shun-Li;ZHANG Kai;WANG Zhi-Min. Effects of Source and Sink Reductions on Micronutrient and Protein Contents of Grain in Wheat [J]. Acta Agron Sin, 2008, 34(09): 1629-1636.
[9] LIU Shu-Yun;DONG Shu-Ting;HU Chang-Hao;BAI Ping;LÜ Xin. Relationship between Ecological Environment and Maize Yield and Quality [J]. Acta Agron Sin, 2005, 31(05): 571-576.
[10] Leng Suohu;Zhu Gengru;Deng Xiulan. Studies on the Sources of the Dry Matter in the Seed of Rapeseed [J]. Acta Agron Sin, 1992, 18(04): 250-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!