Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3277-3288.doi: 10.3724/SP.J.1006.2023.34031

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study for amino acid content at R6 stage in soybean (Glycine max L.) seed

ZHANG Hong-Mei1(), XIONG Ya-Wen2, XU Wen-Jing3, ZHANG Wei1, WANG Qiong1, LIU Xiao-Qing1, LIU Hui3, CUI Xiao-Yan1, CHEN Xin1, CHEN Hua-Tao1,2,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    3College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2023-02-20 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-09
  • Contact: * E-mail: cht@jaas.ac.cn
  • Supported by:
    Key Research and Development Project of Jiangsu Province(BE2019376);Key Research and Development Project of Jiangsu Province(BE2022328);Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)5002);Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)3117);Open Competition Project of Seed Industry Revitalization of Jiangsu Province(JBGS[2021]060);National Natural Science Foundation of China(32001455)

Abstract:

In order to analyze the genetic mechanism of amino acid content in soybean seeds at R6 stage, the contents of arginine, alanine, glutamic acid, and aspartic acid related to flavor quality of vegetable soybean were determined using 264 soybean germplasm materials in 2020 and 2021, and genome-wide association analysis (GWAS) was performed. The results showed that a total of 89 SNP loci were significantly associated with the contents of four amino acids at R6 stage in soybean in two years, among which 5 SNPs [S03_40647948 (Chr. 3), S05_2727464 (Chr. 5), S10_4122977 (Chr. 10), S17_34559022 (Chr. 17), and S19_48541685 (Chr. 19)] could be repeatedly detected by two years or two traits, respectively, which explained 11.25%-28.19% of phenotypic variation. The SNP marker S17_34559022 on Chr. 17 was significantly associated with glutamic acid content in different environments, which belonged to a stable genetic locus. A total of 9 candidate genes were excavated, including bHLH (bHLH DNA-binding superfamily protein), auxin-responsive protein family, and aspartyl protease family protein, it may be an important gene that affected amino acid content. In this study, 5 amino acid content dominant SNP sites and 9 candidate genes were excavated, which provided an insight into the genetic basis of amino acid content in soybean seed at R6 stage and laid a foundation for further mechanism exploration and breeding for flavor quality of vegetable soybean.

Key words: soybean [Glycine max (L.) Merr.], R6 stage, seed, amino acid contents, GWAS, candidate gene

Table 1

Phenotypic variation of amino acid content in soybean at R6 stage"

性状
Trait
年份
Year
平均值
Mean
标准差
SD
变幅
Range
变异系数
CV (%)
Arg 2020 1.23 1.75 0.00-6.79 24.95
2021 1.22 0.81 0.22-4.83 69.20
Ala 2020 0.44 0.83 0.00-5.03 17.56
2021 1.35 0.86 0.29-4.96 63.38
Glu 2020 0.82 0.96 0.00-4.75 36.73
2021 1.15 0.81 0.05-4.79 83.47
Asp 2020 0.23 0.61 0.00-4.08 24.21
2021 0.67 0.55 0.10-5.62 86.23

Table S1

Analysis of variance (ANOVA) for amino acid of soybean seed at R6 stage in two years"

年份 氨基酸 变异来源 自由度 均方 F
Year Amino acid Source of variation DF MS F-value
2020 精氨酸Arginine 基因型 Genotype 219 10.07 248.21**
重复 Replication 2 0.22 5.48**
误差 Residual error 438 0.04
丙氨酸Alanine 基因型 Genotype 220 2.09 254.15**
重复 Replication 2 0.05 6.48**
误差 Residual error 440 0.01
谷氨酸Glutamic acid 基因型 Genotype 219 2.79 147.16**
重复 Replication 2 0.18 9.46**
误差 Residual error 438 0.02
天冬氨酸Aspartic acid 基因型 Genotype 219 1.10 239.36**
重复 Replication 2 0.03 6.56**
误差 Residual error 438 0
2021 精氨酸Arginine 基因型 Genotype 239 1.94 96.44**
重复 Replication 2 0.38 19.07**
误差 Residual error 478 0.02
丙氨酸Alanine 基因型 Genotype 247 2.204895 72.78**
重复 Replication 2 0.140069 4.62*
误差 Residual error 494 0.030295
谷氨酸Glutamic acid 基因型 Genotype 243 4.31 132.85**
重复 Replication 2 0.32 9.81**
误差 Residual error 486 0.03
天冬氨酸Aspartic acid 基因型 Genotype 236 0.92 105.30**
重复 Replication 2 0.03 3.03*
误差 Residual error 472 0.01

Fig. 1

Frequency distribution of amino acid content in soybean at R6 stage for two years"

Table 2

Correlation analysis of amino acid content in soybean natural population at R6 stage"

性状Trait 年份Year Arg Ala Glu
Ala 2020 0.337** 1
2021 0.512** 1
Glu 2020 0.008 0.012 1
2021 0.403** 0.545** 1
Asp 2020 -0.097 0.066 0.176**
2021 0.344** 0.550** 0.244**

Fig. 2

Manhattan and Q-Q diagrams of amino acid content of soybean seed at R6 stage for two years A: Manhattan and Q-Q plots of arginine content in 2020 and 2021; B: Manhattan and Q-Q plots of alanine content in 2020 and 2021; C: Manhattan and Q-Q plots of glutamic acid content in 2020 and 2021; D: Manhattan and Q-Q plots of aspartic acid content in 2020 and 2021."

Table 3

Significant GWAS loci of amino acids with MLM in soybean seed at R6 stage"

代表性SNP
Leading SNP
性状
Trait
染色体
Chr.
显著性位点
Pos a
-log10 P 表型变异
R2 (%)
已报道QTL
Reported QTL
S03_40647948 2020 (Arg), 2021 (Glu) Gm3 40,647,948 11.82 25.96
S05_2727464 2020 (Ala, Glu) Gm5 2,727,464 6.44 12.10
S10_4122977 2020 (Ala, Glu) Gm10 4,122,977 6.76 12.82
S17_34559022 2020 (Glu), 2021 (Glu) Gm17 34,559,022 6.56 11.25 Seed protein 36-14[33]
S19_48541685 2020 (Ala, Glu) Gm19 48,541,685 13.29 28.19 Seed protein 16-2[34]

Fig. 3

Haplotype for SNPs associated with amino acids in soybean natural population (A): box plot of arginine and glutamate acid content of soybean varieties with S03_40647948-A or S03_40647948-C. (B): box plot of alanine and glutamic acid content of soybean varieties with S05_2727464-A or S05_2727464-T. (C): box plot of alanine and glutamic acid content of soybean varieties with S10_4122977-A or S10_4122977-C. (D): box plot of alanine and glutamic acid content of soybean varieties with S19_48541685-A or S19_48541685-G. (E): box plot of glutamic acid content of soybean varieties with S17_34559022-C or S17_34559022-G. ***: P < 0.001."

Table 4

Candidate genes for amino acid composition in soybean natural population at R6 stage"

基因ID
Gene ID
染色体
Chr.
物理位置
Physical position
拟南芥同源基因
Homologs in A. thaliana
功能注释
Functional annotation
Glyma.03G195700 3 40,576,339-40,579,198 AT3G52730 泛醇-细胞色素C还原酶
Ubiquinol-cytochrome C reductase
Glyma.03G196600 3 40,625,298-40,629,202 AT1G57790 F-box家族蛋白
G-F-box family protein
Glyma.03G197600 3 40,690,880-40,692,074 AT3G52590 泛素延伸蛋白
Ubiquitin extension protein
Glyma.03G197900 3 40,721,164-40,723,468 AT5G22380 含有蛋白质的NAC结构域
NAC domain containing protein
Glyma.05G031100 5 2,705,628-2,711,940 AT5G62640 富含脯氨酸的家族蛋白
Proline-rich family protein
Glyma.05G032000 5 2,790,581-2,794,268 AT3G08720 丝氨酸/苏氨酸蛋白激酶
Serine/threonine protein kinase
Glyma.05G045600 5 4,055,163-4,057,843 AT1G24400 赖氨酸组氨酸转运体
Lysine histidine transporter
Glyma.10G045200 10 4,034,799-4,035,293 AT2G37430 C2H2和C2HC锌指超家族蛋白
C2H2 and C2HC zinc fingers superfamily protein
Glyma.10G045300 10 4,036,736-4,037,634 AT3G53600 C2H2型锌指家族蛋白
C2H2-type zinc finger family protein
Glyma.10G045400 10 4,040,116-4,040,940 AT3G53600 C2H2型锌指家族蛋白
C2H2-type zinc finger family protein
Glyma.17G046000 17 3,450,099-3,451,186 AT1G72430 生长素反应蛋白家族
Auxin-responsive protein family
Glyma.19G234800 19 48,458,962-48,463,730 AT1G55040 锌指家族蛋白
Zinc finger family protein
Glyma.19G236100 19 48,530,095-48,531,946 AT1G54860 糖蛋白膜前体
Glycoprotein membrane precursor
Glyma.19G236600 19 48,558,165-48,559,649 AT1G03220 天冬氨酸蛋白酶家族蛋白
Aspartyl protease family protein
Glyma.19G236900 19 48,600,159-48,602,744 AT1G72210 bHLH DNA结合超家族蛋白
bHLH DNA-binding superfamily protein

Fig. 4

Relative expression pattern of nine candidate genes during soybean seed development period"

[1] Akazawa T, Yanagisawa Y, Sasahara T. Concentrations of water-soluble nitrogen and amino acids as criteria for discriminating vegetable-type and grain-type soybean cultivars. Breed Sci, 1997, 47: 39-44.
[2] Ferh W R, Caviness C E, Burmood D T, Pennington J S. Stages of development descriptions for soybean (Glycine max (L.) Merrill). Crop Sci, 1971, 11: 929-931.
doi: 10.2135/cropsci1971.0011183X001100060051x
[3] Fehr W R, Caviness C E. Stages of Soybean Development. Ames: Iowa State University of Science and Technology, Iowa State University, 1977. pp 1-12.
[4] Dong D K, Fu X J, Yuan F J, Chen P Y, Zhu S L, Li B Q, Yang Q H, Yu X M, Zhu D H. Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genet Resour Crop Evol, 2014, 61: 173-183.
doi: 10.1007/s10722-013-0024-y
[5] Mohamed A, Rao M S. Vegetable soybeans as a functional food. In: Liu K, eds. Soybeans as Functional Foods and Ingredients, New York: AOAC Press, 2004. pp 209-238.
[6] Monteiro S T, Minekawa Y, Kosugi Y, Akazawa T, Oda K. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J Photogram, 2007, 62: 2-12.
doi: 10.1016/j.isprsjprs.2006.12.002
[7] Hounsome N, Hounsome B, Tomos D, Edwards-Jones G. Plant metabolites and nutritional quality of vegetables. J Food Sci, 2008, 73: R48-R65.
[8] Ong P K, Liu S Q. Handbook of Vegetables and Vegetable Processing:Flavor and Sensory Characteristics of Vegetables. Hoboken: John Wiley & Sons Ltd, 2018. pp 135-156.
[9] 王丹英, 汪自强, 方勇, 徐律平. 菜用大豆食味品质及其与内含物关系研究. 金华职业技术学院学报, 2002, 2(3): 15-17.
Wang D Y, Wang Z Q, Fang Y, Xu L P. Studies on the relationship between vegetable soybean eating quality and its components. J Jinhua Polytechnic, 2002, 2(3): 15-17. (in Chinese with English abstract)
[10] Shanmugasundaram S, Cheng S T, Huang M T, Yan M R. Quality requirement and improvement of vegetable soybean. In: Shanmugasundaram S, ed. Vegetable Soybean: Research Needs for Production and Quality Improvement. Taiwan: Asian Vegetable Research and Development Center, 1991. pp 92-102.
[11] Chen Z, Zhong W, Zhou Y, Ji P, Wan Y, Shi S, Yang Z, Gong Y, Mu F, Chen S. Integrative analysis of metabolome and transcriptome reveals the improvements of seed quality in vegetable soybean (Glycine max (L.) Merr.). Phytochem Lett, 2022, 200: 113216-113228.
[12] Guo L, Huang L, Cheng X, Gao Y, Zhang X, Yuan X, Xue C, Chen X. Volatile flavor profile and sensory properties of vegetable soybean. Molecules, 2022, 29, 27: 939.
doi: 10.3390/molecules27010029
[13] Zhao X, Dong H, Chang H, Zhao J, Teng W, Qiu L, Li W, Han Y. Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [Glycine max (L.) Merrill]. BMC Genomics, 2019, 20: 648.
doi: 10.1186/s12864-019-6009-2 pmid: 31412769
[14] Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A, Ishimoto M. Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed Sci, 2017, 67: 363-369.
doi: 10.1270/jsbbs.16201
[15] Assefa T, Otyama P I, Brown A V, Kalberer S R, Kulkarni R S, Cannon S B. Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean. BMC Genomics, 2019, 20: 527.
doi: 10.1186/s12864-019-5907-7 pmid: 31242867
[16] Liu W, Kim M Y, Kang Y J, Van K, Lee Y H, Srinives P, Yuan D L, Lee S H. QTL identification of flowering time at three different latitudes reveals homeologous genomic regions that control flowering in soybean. Theor Appl Genet, 2011, 123: 545-553.
doi: 10.1007/s00122-011-1606-8 pmid: 21660531
[17] Wang J J, Hu B, Jing Y, Hu X, Guo Y, Chen J, Liu Y, Hao J, Li W, Ning H. Detecting QTL and candidate genes for plant height in soybean via linkage analysis and GWAS. Front Plant Sci, 2022, 12: 803820.
doi: 10.3389/fpls.2021.803820
[18] Kumar V, Goyal V, Mandlik R, Kumawat S, Sudhakaran S, Padalkar G, Rana N, Deshmukh R, Roy J, Sharma T R, Sonah H. Pinpointing genomic regions and candidate genes associated with seed oil and protein content in soybean through an integrative transcriptomic and QTL Meta-analysis. Cells, 2022, 12: 97.
doi: 10.3390/cells12010097
[19] Zhang H M, Zhang G W, Zhang W, Wang Q, Xu W J, Liu X Q, Cui X Y, Chen X, Chen H T. Identification of loci governing soybean seed protein content via genome-wide association study and selective signature analyses. Front Plant Sci, 2022, 13: 1045953.
doi: 10.3389/fpls.2022.1045953
[20] Panthee D R, Pantalone V R, Saxton A M, West D R, Sams C E. Genomic regions associated with amino acid composition in soybean. Mol Breed, 2006, 17: 79-89.
doi: 10.1007/s11032-005-2519-5
[21] Vaughn J N, Nelson R L, Song Q, Cregan P B, Li Z. The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3: Genes Genom Genet, 2014, 4: 2283-2294.
[22] Warrington C, Abdel-Haleem H, Hyten D, Cregan P, Orf J, Killam A, Bajjalieh N, Li Z, Boerma H. QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet, 2015, 128: 839-850.
doi: 10.1007/s00122-015-2474-4 pmid: 25673144
[23] 汪桂凤, 钟宣伯, 查霆, 周启政, 何梦迪, 唐桂香. 菜用大豆种质资源评价与筛选. 大豆科学, 2019, 38: 169-180.
Wang G F, Zhong X B, Zha T, Zhou Q Z, He M D, Tang G X. Evaluation and screening of fresh soybean germplasm. Soybean Sci, 2019, 38: 169-180. (in Chinese with English abstract)
[24] Abe T, Ujiie T, Sasahara T. Varietal differences in free amino acid and sugar concentrations in immature seeds of soybean under raw and boiling treatments. J Jpn Soc Food Sci, 2004, 51: 172-176.
doi: 10.3136/nskkk.51.172
[25] Tseng Y H, Lee Y L, Li R C, Mau J L. Non-volatile flavour components of ganoderma tsugae. Food Chem, 2005, 90: 409-415.
doi: 10.1016/j.foodchem.2004.03.054
[26] Ye Z, Shang Z X, Li M Q, Zhang X T, Ren H B, Hu X S, Yi J J. Effect of ripening and variety on the physiochemical quality and flavor of fermented Chinese chili pepper (Paojiao). Food Chem, 2022, 368: 130797.
doi: 10.1016/j.foodchem.2021.130797
[27] Guo J, Rahman A, Mulvaney M J, Hossain M M, Basso K, Fethiere R, Babar M A. Evaluation of edamame genotypes suitable for growing in Florida. Agron J, 2020, 112: 693-707.
doi: 10.1002/agj2.v112.2
[28] Flores D, Giovanni M, Kirk L, Liles G. Capturing and explaining sensory differences among organically grown vegetable soybean varieties grown in Northern California. J Food Sci, 2019, 84: 613-622.
doi: 10.1111/1750-3841.14443 pmid: 30741493
[29] Zhang J, Wang X, Lu Y, Bhusal S J, Song Q, Cregan P B, Yen Y, Brown M, Jiang G L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant, 2018, 11: 460-472.
doi: S1674-2052(17)30386-6 pmid: 29305230
[30] Zhang S, Hao D, Zhang S, Zhang D, Wang H, Du H, Kan G, Yu D. Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean. Mol Genet Genomics, 2021, 296: 91-102.
doi: 10.1007/s00438-020-01704-7
[31] Zhang W, Xu W, Zhang H, Liu X, Cui X, Li S, Song L, Zhu Y, Chen X, Chen H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet, 2021, 134: 1329-1341.
doi: 10.1007/s00122-021-03774-6 pmid: 33507340
[32] Xiao X, Hou Y, Liu Y, Liu Y, Zhao H, Dong L, Du J, Wang Y, Bai G, Luo G. Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC. Talanta, 2013, 107: 344-348.
doi: 10.1016/j.talanta.2013.01.044 pmid: 23598232
[33] Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W, Morris B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.2013.132.issue-6
[34] Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387-393.
doi: 10.1023/A:1022282726117
[35] Xu W, Wang Q, Zhang W, Zhang H, Liu X, Song Q, Zhu Y, Cui X, Chen X, Chen H. Using transcriptomic and metabolomic data to investigate the molecular mechanisms that determine protein and oil contents during seed development in soybean. Front Plant Sci, 2022, 13: 1012394.
doi: 10.3389/fpls.2022.1012394
[36] Orf J H, Chase K, Adler F R, Mansur L M, Lark K G. Genetics of soybean agronomic traits. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[37] Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M, Toda T, Yamada K, Yagasaki K, Yamada N, Tsukiyama T, Yamada T, Tanisaka T. Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci, 2010, 60: 243-254.
doi: 10.1270/jsbbs.60.243
[38] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
doi: 10.1007/s00122-004-1661-5 pmid: 15221142
[39] Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan D. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evol, 2013, 3: 2150-2168.
doi: 10.1002/ece3.606 pmid: 23919159
[40] Du W, Wang M, Fu S, Yu D. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J Genet Genomics, 2009, 36: 721-731.
doi: 10.1016/S1673-8527(08)60165-4
[41] Wang X, Jiang G L, Green M, Scott R A, Hyten D L, Cregan P B. Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed, 2012, 30: 1163-1179.
doi: 10.1007/s11032-012-9704-0
[42] Ju Y, Liu C, Lu W, Zhang Q, Sodmergen. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development. Biochem Biophys Res Commun, 2016, 474: 371-376.
doi: 10.1016/j.bbrc.2016.04.114
[43] Rao V, Virupapuram V. Arabidopsis F-box protein At1g08710 interacts with transcriptional protein ADA2b and imparts drought stress tolerance by negatively regulating seedling growth. Biochem Biophys Res Commun, 2021, 536: 45-51.
doi: 10.1016/j.bbrc.2020.12.054
[44] Lantcheva A, Zhiponova M, Revalska M, Heyman J, Dincheva I, Badjakov I, De Geyter N, Boycheva I, Goormachtig S, De Veylder L. A common F-box gene regulates the leucine homeostasis of Medicago truncatula and Arabidopsis thaliana. Protoplasma, 2022, 259: 277-290.
doi: 10.1007/s00709-021-01662-w
[45] Xu Y P, Zhao Y, Song X Y, Ye Y F, Wang R G, Wang Z L, Ren X L, Cai X Z. Ubiquitin extension protein uep1 modulates cell death and resistance to various pathogens in tobacco. Phytopathology, 2019, 109: 1257-1269.
doi: 10.1094/PHYTO-06-18-0212-R
[46] Nawaz G, Han Y, Usman B, Liu F, Qin B, Li R. Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech, 2019, 9: 254.
doi: 10.1007/s13205-019-1787-4 pmid: 31192079
[47] Wang R, Chong K, Wang T. Divergence in spatial expression patterns and in response to stimuli of tandem-repeat paralogues encoding a novel class of proline-rich proteins in Oryza sativa. J Exp Bot, 2006, 57: 2887-2897.
doi: 10.1093/jxb/erl057
[48] Kant S, Bi Y M, Zhu T, Rothstein S J. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol, 2009, 151: 691-701.
doi: 10.1104/pp.109.143875 pmid: 19700562
[49] Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J, 2012, 71: 684-697.
doi: 10.1111/tpj.2012.71.issue-4
[50] Hou K, Wu W, Gan S S. SAUR36, a small auxin-up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol, 2013, 161: 1002-1009.
doi: 10.1104/pp.112.212787
[51] He S L, Hsieh H L, Jauh G Y. Small auxin up RNA62/75 are required for the translation of transcripts essential for pollen tube growth. Plant Physiol, 2018, 178: 626-640.
doi: 10.1104/pp.18.00257
[52] Gao H, Li R, Guo Y. Arabidopsis aspartic proteases A36 and A39 play roles in plant reproduction. Plant Signal Behav, 2017, 12: e1304343.
doi: 10.1080/15592324.2017.1304343
[53] Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152
[54] Frova C, Krajewski P, Fonzo N D, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers: I. Yield components. Theor Appl Genet, 1999, 99: 280-288.
doi: 10.1007/s001220051233
[55] 张华, 田蕊, 褚佳豪, 邢馨竹, 陈士亮, 李喜焕, 张彩英. 大豆需磷关键时期磷高效利用遗传位点挖掘. 植物遗传资源学报, 2020, 21: 991-1001.
doi: 10.13430/j.cnki.jpgr.20191228001
Zhang H, Tian R, Chu J H, Xing X Z, Chen S L, li X H, Zhang C Y. Mining of genetic loci controlling phosphorus efficiency at crucial phosphorus requirement stages in soybean. J Plant Genet Resour, 2020, 21: 991-1001. (in Chinese with English abstract)
[1] SONG Song-Quan, TANG Cui-Fang, LEI Hua-Ping, JIANG Xiao-Cheng, WANG Wei-Qing, CHENG Hong-Yan. Research progress of seed dormancy and germination regulation [J]. Acta Agronomica Sinica, 2024, 50(1): 1-15.
[2] LI Ming-Yue, ZHANG Wen-Ting, LI Yang, ZHANG Bao-Long, YANG Li-Ming, WANG Jin-Yan. Effects of small peptide Ospep5 on cadmium tolerance in rice [J]. Acta Agronomica Sinica, 2024, 50(1): 67-75.
[3] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[4] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[5] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[6] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[7] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[8] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[9] TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842.
[10] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[11] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[12] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[13] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[14] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, and WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[15] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .