Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 1004-1014.doi: 10.3724/SP.J.1006.2024.34098

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Assessment of the cultivation suitability and suitable regions of Gastrodia elata under climate change in China

HAO Jia-Le(), ZHAO Jiong-Chao, ZHAO Ming-Yu, WANG Yi-Xuan, LU Jie, SHI Xiao-Yu, GAO Zhen-Zhen, CHU Qing-Quan()   

  1. College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
  • Received:2023-06-10 Accepted:2023-10-23 Online:2024-04-12 Published:2023-12-08
  • Contact: * E-mail: cauchu@cau.edu.cn
  • Supported by:
    Major Science and Technology Projects in Yunnan Province(202202AE090029)

Abstract:

Climate change affects species growth areas by altering the suitability of their habitats. As a rare and endangered medical plant in China, the evaluation of the suitable distribution area and the impact of climate change on the suitability of Gastrodia elata can provide important information for the production layout of Gastrodia elata. In this study, the MaxEnt model was used to simulate the spatial distribution and changes of the suitability and suitable area for Gastrodia elata cultivation from 1961 to 2020, based on geographic distribution and environmental data. Results showed that the main environmental factors affecting the distribution of Gastrodia elata were solar radiation from May to July, precipitation in October and November, the minimum temperature in the coldest month, and vegetation type. The high suitable areas for Gastrodia elata cultivation in China were mainly distributed in the southwestern region around the Sichuan Basin. 1961 to 2020, the suitability for Gastrodia elata cultivation had shown a fluctuating increasing trend, with the area of improved suitability accounting for 9.10% of the total land area of China, mainly concentrated in Southwest China, the parts of central and eastern China, and Shaanxi province. The overall decrease in solar radiation from May to July over the past 60 years was the main reason for the increased suitability of asparagus cultivation. This study provided a scientific basis for the production and artificial cultivation site selection of Gastrodia elata in China, which provided reference significance for formulating strategies to respond to future climate change.

Key words: Gastrodia elata, planting suitability, environmental factors, MaxEnt model, ArcGIS

Fig. 1

Distribution site of Gastrodia elata and meteorological observation stations in China This map is based on the standard map downloaded from the standard map service website of the National Bureau of Surveying, Mapping and Geographic Information with the approval number GS (2019) 1822. The boundary of the base map is not modified."

Table 1

Potential environmental factor affecting the planting distribution of Gastrodia elata in China"

潜在环境因子
Potential environmental factor
意义
Meaning
文献
References
5月至7月太阳辐射量(Solar_5to7)
Solar radiation from May to July
反映天麻地面生长阶段光照吸收状况
Reflecting the light absorption status of the ground growth stage of Gastrodia elata
[15]
10月至11月降水量(Pre_10to11)
Precipitation in October and November
反映天麻关键生育时期水分供应情况
Reflecting water availability during the critical reproductive period of Gastrodia elata
[23,16]
植被类型(VEG)
Vegetation
天麻自然分布多需要一定的落叶阔叶林
Natural distribution of Gastrodia elata mostly requires a certain amount of deciduous broadleaf forest
[24]
最冷月最低温(MINtem_CM)
Min temperature of coldest month
天麻生长期内承受的最低温度
The minimum temperature to be tolerated during the growth period of Gastrodia elata
[23]
等温性(ISO)
Isothermality
天麻生长期内热量平均水平
Average heat level during the growth period of Gastrodia elata
[23]
含粘量(SCS)
Soil sediment concentration
反映天麻种植地土壤保水保肥能力
Reflects the soil water and fertility retention capacity of the Gastrodia elata cultivation sites
[25]
降水变异系数(CVpre)
Precipitation variability
天麻生长期降水量的季节性差异
Seasonal differences in precipitation during the growing season of Gastrodia elata
[26]
坡度Slope 影响天麻空间分布
Influence on the spatial distribution of Gastrodia elata
[24]
土壤有机碳(SOC)
Soil organic carbon
反映天麻种植地土壤质量状况
Reflecting the soil quality of the Gastrodia elata cultivation sites
[27]
坡向(ASPECT)
Slope
影响天麻营养吸收状况和产量
Influence nutrient uptake status and yield of absorption conditions of Gastrodia elata
[28]
土壤含水量(SWC)
Soil water content
反映天麻种植地土壤水分状况
Reflecting the soil moisture status of the Gastrodia elata cultivation sites
[27]

Fig. 2

Receiver operating characteristic (ROC) curve Red lines are the mean values and blue lines are response curves obtained from each of 10 MaxEnt runs."

Fig. 3

Regularized training gain (a) and percentage contribution (b) of the MaxEnt model based on the jackknife test In (a), the red bar shows the training gain of the model using all Ecological factors, the dark blue bar shows the training gain of the model using only one Ecological factor, and the light blue bar shows the training gain of the model using all but one factor. Veg: vegetation; Solar_5to7: solar radiation from May to July; Pre_10to11: precipitation in October and November; Mintem_CM: minimum temperature of coldest month; CVpre: precipitation variability; SCS: soil sediment concentration; SOC: soil organic carbon; ISO: isothermality; SWC: soil water content."

Table 2

Threshold division of dominant environmental factors affecting the suitability for cultivation of Gastrodia elata"

分类
Classification
5月至7月太阳辐射量
Solar radiation from May to July (MJ m-2)
10月至11月降水量 Precipitation in October and November (mm) 最冷月最低温
Minimum temperature
of coldest month (℃)
植被类型
Vegetation
高适宜区
High suitable area
1230.14-1598.53 79.58-159.81 -11.17 to -0.68 针叶林, 针阔叶混交林, 阔叶林
Coniferous forests, mixed coniferous, and broad-leaved forests, broad- leaved forests
中适宜区
Moderate suitable area
1598.53-1713.89 72.66-78.20
161.19-209.60
-13.83 to -11.46
-0.53 to -0.09
灌丛, 栽培植被
Scrub and cultivated vegetation
低适宜区
Less suitable area
1713.89-1810.64 67.13-72.66
209.60-238.65
-14.72 to -13.98
0.21 to 1.98
其他
Others
不适宜区
Unsuitable area
<1230.14 or >1810.64 <67.13 or >238.65 < -14.72 or >1.98 荒漠, 草原, 草甸, 沼泽, 高山植被
Deserts, grasslands, meadows, swamps, and alpine vegetation

Fig. 4

Geographical distribution of suitable areas for Gastrodia elata This map is based on the standard map downloaded from the standard map service website of the National Bureau of Surveying, Mapping and Geographic Information with the approval number GS (2019) 1822. The boundary of this base map is not modified."

Fig. 5

Geographical distribution of suitable areas (a, b) and suitability changed for Gastrodia elata (c) This map is based on the standard map downloaded from the standard map service website of the National Bureau of Surveying, Mapping and Geographic Information with the approval number GS (2019) 1822. The boundary of this base map is not modified."

Table 3

Distribution area of suitable areas for Gastrodia elata in different years in China (×106 hm2)"

适宜性划分
Suitability regionalization
年份Years
1961-1970 1971-1980 1981-1990 1991-2000 2001-2010 2011-2020
低适宜区Less suitable area 61.79 76.84 72.97 87.72 76.15 81.03
中适宜区Moderate suitable area 25.71 33.68 35.81 47.46 41.93 40.51
高适宜区High suitable area 15.09 21.83 24.60 40.63 32.49 26.66
总适宜区Total suitable area 102.59 132.35 133.38 175.81 150.57 148.20
不适宜区Unsuitable area 857.41 827.65 826.62 784.19 809.43 811.80
[1] Intergovernmental Panel on Climate Change. Climate Change 2013:the Physical Science Basis. Working Group I:Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 5-6.
[2] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatial and temporal characteristics of high temperature stress during maize fertility in different regions of China in the context of climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[3] 韩湘玲. 作物生态学. 北京: 气象出版社, 1991. pp 15-18.
Han X L. Crop Ecology. Beijing: China Meteorological Press, 1991. pp 15-18. (in Chinese)
[4] Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett, 2005, 8: 993-1009.
doi: 10.1111/j.1461-0248.2005.00792.x pmid: 34517687
[5] Zhao J C, Wang C, Shi X Y, Bo X Z, Li S, Shang M F, Chen F, Chu Q Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric Syst, 2021, 192: 1873-2267.
[6] Yuan H S, Wei Y L, Wang X G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol, 2015, 2: 140-145.
doi: 10.1016/j.funeco.2009.02.001
[7] He Q J, Zhou G S, Lu X M, Zhou M Z. Climatic suitability and spatial distribution for summer maize cultivation in China at 1.5 and 2.0C global warming. Sci Bull, 2019, 64: 690-697.
doi: 10.1016/j.scib.2019.03.030
[8] Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ, 2009, 1: 94-98.
[9] Fand B B, Kumar M, Kamble A L. Predicting the potential geographic distribution of cotton mealybug Phenacoccus solenopsis in India based on MAXENT ecological niche model. J Environ Biol, 2014, 35: 973.
[10] 国家药典委员会. 中华人民共和国药典(一部). 北京: 中国医药科技出版社, 2020. pp 59-60.
National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (Part 1). Beijing: China Pharmaceutical Science and Technology Press, 2020. pp 59-60. (in Chinese)
[11] 胡荣丽. 天麻栽培管理技术分析. 农业与技术, 2015, 35(4): 111.
Hu R L. Analysis of cultivation and management technical of Gastrodia elata. Agric Technol, 2015, 35(4): 111. (in Chinese with English abstract)
[12] 郭怡博, 莫可, 王桂荣, 张悦, 张伟, 周建国, 孙志蓉. 未来气候条件下天麻适生区预测及时空变化分析. 中国中医药信息杂志, 2022, 29(7): 1-7.
Guo Y B, Mo K, Wang G R, Zhang Y, Zhang W, Zhou J G, Sun Z R. Prediction and spatial and temporal variation analysis of asparagus suitable areas under future climate conditions. Chin J Trad Chin Med Inf, 2022, 29(7): 1-7. (in Chinese with English abstract)
[13] 张琴, 张东方, 吴明丽, 郭杰, 孙成忠. 基于生态位模型预测天麻全球潜在适生区. 植物生态学报, 2017, 41: 770-778.
doi: 10.17521/cjpe.2016.0380
Zhang Q, Zhang D F, Wu M L, Guo J, Sun C Z. Predicting the global potential fitness zones of asparagus based on ecological niche model. J Plant Ecol, 2017, 41: 770-778. (in Chinese with English abstract)
[14] 胡青青, 王咏菠, 胥烜勋, 黎敏, 王涛. 天麻栽培技术与品种选育研究进展. 中国药学杂志, 2021, 56: 868-874.
doi: 10.11669/cpj.2021.11.002
Hu Q Q, Wang Y B, Xu X X, Li M, Wang T. Progress of cultivation technology and variety selection of Tianma. Chin J Pharm, 2021, 56: 868-874. (in Chinese with English abstract)
[15] 余彬情, 杨玲, 张启鑫, 田佳昕, 万文勇. 天麻环境习性分析及栽培方法探究. 南方农业, 2020, 14(32): 58-59.
Yu B Q, Yang L, Zhang Q X, Tian J X, Wan W Y. Analysis of environmental habit and cultivation method of Gastrodia elata. Southern Agric, 2020, 14(32): 58-59. (in Chinese with English abstract)
[16] 刘金美, 田治蛟, 戴堃, 张昌飞, 余显伦, 郭有刚, 刘大会. 昭通乌天麻最佳采收期研究. 中国现代中药, 2016, 18(2): 189-192.
Liu J M, Tian Z J, Dai K, Zhang C F, Yu X L, Guo Y G, Liu D H. Study on the optimal harvesting period of Zhaotong Wu Tianma. Modern Chin Med, 2016, 18(2): 189-192. (in Chinese with English abstract)
[17] 陈顺芳, 黄先敏, 祁岑. 天麻的生长发育过程及其营养特性. 昭通师范高等专科学校学报, 2011, 33(5): 19-21.
Chen S F, Huang X M, Qi C. Growth and development process of asparagus and its nutritional characteristics. J Zhaotong Norm Coll High Educat, 2011, 33(5): 19-21. (in Chinese with English abstract)
[18] 王海峰, 王超群, 尉广飞, 黄钦, 张海珠, 董林林. 天麻全国产地适宜性区划及其种植技术. 中国现代中药, 2021, 23: 1869-1875.
Wang H F, Wang C Q, Wei G F, Huang Q, Zhang H Z, Dong L L. The suitability zoning of national origin of asparagus and its cultivation technology. Modern Chin Med, 2021, 23: 1869-1875. (in Chinese with English abstract)
[19] 江维克, 张进强, 郭兰萍, 杨野, 肖承鸿, 袁青松, 王晓, 周涛. 天麻种植产业生态化发展的思路与建议. 中国中药杂志, 2022, 47: 2277-2280.
Jiang W K, Zhang J Q, Guo L P, Yang Y, Xiao C H, Yuan Q S, Wang X, Zhou T. Ideas and suggestions for ecological development of Tianma plantation industry. Chin J Trad Chin Med, 2022, 47: 2277-2280. (in Chinese with English abstract)
[20] Sillero N. What does ecological modelling model A proposed classification of ecological niche models based on their underlying methods. Ecol Modell, 2011, 222: 1343-1346.
doi: 10.1016/j.ecolmodel.2011.01.018
[21] Peterson A T, Nakazawa Y. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr, 2008, 17: 135-144.
doi: 10.1111/geb.2008.17.issue-1
[22] Worthington T A, Zhang T, Logue D R, Mittelstet A R, Brewer K. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol Modell, 2016, 342: 1-18.
doi: 10.1016/j.ecolmodel.2016.09.016
[23] 刘炳仁. 天麻高产栽培技术. 上海: 上海科学技术文献出版社, 1992. pp 21-22.
Liu B R. Cultivation Technology of High Yield of Asparagus. Shanghai: Shanghai Science and Technology Literature Press, 1992. pp 21-22. (in Chinese)
[24] 彭华胜, 王德群. 生态因子与古今天麻产区的关系. 现代中药研究与实践, 2007, 22(2): 6-9.
Peng H S, Wang D Q. Affecting ecological factor on location of Gastrodia elata. Res Pract Chin Med, 2007, 22(2): 6-9. (in Chinese with English abstract)
[25] 何海艳, 王玉川, 丁培超, 胡德分, 余显伦, 杨成巧. 天麻种植生态气候条件及增产技术. 南方农业, 2018, 12(36): 5-7.
He H Y, Wang Y C, Ding P C, Hu D F, Yu X L, Yang C Q. Ecological and climatic conditions of asparagus cultivation and yield enhancement techniques. Southern Agric, 2018, 12(36): 5-7. (in Chinese with English abstract)
[26] 曾玉洁, 王业红, 谭涛, 王传华. 北方蜜环菌菌索生长、发育对环境氧气及土壤湿度的响应. 菌物学报, 2022, 41: 739-748.
doi: 10.13346/j.mycosystema.210446
Zeng Y J, Wang Y H, Tan T, Wang C H. Response of growth and development of northern honey ring fungus mycelium to environmental oxygen and soil moisture. J Mycol, 2022, 41: 739-748. (in Chinese with English abstract)
[27] 袁崇文. 中国天麻. 贵阳: 贵州科技出版社, 2002. p 17.
Yuan C W. Chinese Tianma. Guiyang: Guizhou Science and Technology Press, 2002. p 17. (in Chinese)
[28] 刘威, 赵致, 王华磊, 罗夫来, 李金玲, 刘红昌, 罗春丽. 不同坡向与种植层数组合对仿野生栽培红天麻的影响. 中药材, 2015, 38: 883-888.
Liu W, Zhao Z, Wang H L, Luo F L, Li J L, Liu H C, Luo C L. Effects of different combinations of slope orientation and planting layers on wild-cultivated red asparagus. Chin Med Mater, 2015, 38: 883-888. (in Chinese with English abstract)
[29] Singh K, McClean C J, Buker P, Hartley S E, Hill J K. Mapping regional risks from climate change for rainfed rice cultivation in India. Agric Syst, 2017, 156: 76-84.
doi: 10.1016/j.agsy.2017.05.009
[30] Papier C M, Poulos H M, Kusch A. Invasive species and carbon flux: the case of invasive beavers (Castor canadensis) in riparian Nothofagus forests of Tierra del Fuego Chile. Clim Change, 2019, 153: 219-234.
doi: 10.1007/s10584-019-02377-x
[31] Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293.
doi: 10.1126/science.3287615 pmid: 3287615
[32] 马青江, 孙操稳, 张乐英, 胡梓恒, 张仕娇, 洑香香. 东亚四照花群体中国潜在适生区预测研究. 南京林业大学学报(自然科学版), 2019, 43(5): 135-140.
doi: 10.3969/j.issn.1000-2006.201901046
Ma Q J, Sun C W, Zhang L Y, Hu Z H, Zhang S J, Fu X X. Prediction of the potential habitat of East Asian Tetrahymena group in China. J Nanjing For Univ (Nat Sci Edn), 2019, 43(5): 135-140. (in Chinese with English abstract)
[33] 周元. 天麻生物学特性研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2005.
Zhou Y. Biological Characterization of Asparagus. MS Thesis of Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi, China, 2005. (in Chinese with English abstract)
[34] 罗夫来, 刘威, 张博华, 赵致, 王华磊, 李金玲. 地理与植被因子对云贵高原仿野生栽培天麻的影响. 北方园艺, 2023, (9): 97-103.
Luo F L, Liu W, Zhang B H, Zhao Z, Wang H L, Li J L. Influence of geographic and vegetation factors on the wild cultivation of Tianma in the Yunnan-Guizhou Plateau. Northern Hortic, 2023, (9): 97-103. (in Chinese with English abstract)
[35] 中国植被编辑委员会. 中国植被. 北京: 科学出版社, 1995. pp 731-745.
Chinese Vegetation Editorial Committee. Vegetation of China. Beijing: Science Press, 1995. pp 731-745. (in Chinese)
[36] 中国医学科学院药物研究所. 中药志. 北京: 人民卫生出版社, 1959. p 88.
Institute of Pharmaceutical Sciences, Chinese Academy of Medical Sciences. Chinese Medicine. Beijing: People’s Health Publishing House, 1959. p 88. (in Chinese)
[37] 罗夫来, 刘威, 张博华, 赵致, 王华磊, 李金玲, 罗春丽. 云贵高原仿野生栽培天麻的产量影响因子及生长发育规律研究. III: 生长发育规律与生境因子特征. 时珍国医国药, 2021, 32: 1221-1225.
Luo F L, Liu W, Zhang B H, Zhao Z, Wang H L, Li J L, Luo C L. Study on yield influencing factors and growth and development patterns of wild cultivated asparagus on the Yunnan-Guizhou plateau. III: Growth and development patterns and habitat factor characteristics. Lishizhen Med Mater Medica Res, 2021, 32: 1221-1225. (in Chinese with English abstract)
[38] Yang S, Wang X L, Wild M. Homogenization and trend analysis of the 1958-2016 in situ surface solar radiation records in China. J Climate, 2018, 31: 4529-4541.
doi: 10.1175/JCLI-D-17-0891.1
[39] 齐月, 房世波, 周文佐. 近50年来中国地面太阳辐射变化及其空间分布. 生态学报, 2014, 34: 7444-7453.
Qi Y, Fang S B, Zhou W Z. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecol Sin, 2014, 34: 7444-7453. (in Chinese with English abstract)
[40] 申彦波, 王标. 近50年中国东南地区地面太阳辐射变化对气温变化的影响. 地球物理学报, 2011, 54: 1457-1465.
Shen Y B, Wang B. Effect of surface solar radiation variations on temperature in South-East China during recent 50 years. Chin J Geophys, 2011, 54: 1457-1465 (in Chinese with English abstract).
[41] 石子为, 马聪吉, 康传志, 王丽, 张智慧, 陈骏飞, 张小波, 刘大会. 基于空间分析的昭通天麻生态适宜性区划研究. 中国中药杂志, 2016, 41: 3155-3163.
Shi Z W, Ma C J, Kang C Z, Wang L, Zhang Z H, Chen J F, Zhang X B, Liu D H. Research on the ecological suitability zoning of Zhaotong Tianma based on spatial analysis. Chin J Trad Chin Med, 2016, 41: 3155-3163. (in Chinese with English abstract)
[1] TANG Chao-Chen,LUO Feng,LI Xin-Yu,PEI Zhong-You,GAO Jian-Ming,SUN Shou-Jun*. Responsiveness of Sweet Sorghum in Yield and Quality Related Traits to Environmental Factors [J]. Acta Agron Sin, 2015, 41(10): 1612-1618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .