Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 1015-1029.doi: 10.3724/SP.J.1006.2024.34116

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L.

ZHOU Xiang-Yu(), XU Jin-Song, XIE Ling-Li(), XU Ben-Bo(), ZHANG Xue-Kun   

  1. Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education / Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2023-07-06 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-15
  • Contact: * E-mail: linglixie@yangtzeu.edu.cn; E-mail: benboxu@yangtzeu.edu.cn
  • Supported by:
    Major Projects of Agricultural Biology Breeding of China(2023ZD04042);Entrusted Program of Ministry of Agriculture and Rural Affairs of China(15214011);Hubei Provincial Department of Agriculture Project (Hubei Province Nongyou [2022] 7)

Abstract:

The Yangtze River basin is the main producing area of rapeseeds in China, which is wet and rainy all the year round, and the rapeseed-rice rotation system is implemented in the producing area, resulting in frequent waterlogging. To explore the effects of waterlogging at seedling stage on phenotypic traits, physiological characteristics, photosynthesis, relative gene transcriptional levels, and the regulation of exogenous hormone inhibitors on rapeseed damage under waterlogging, a pot experiment was conducted, and the strong waterlogging tolerant line YZ12, medium waterlogging tolerant line YZ45, and weak waterlogging tolerant line YZ59 were used as the experimental materials. The results indicated that flooding stress severely inhibited the growth of rapeseed, and root activity could be used as an indicator to measure the impact of flooding stress on rapeseed growth. The observation of root cell ultrastructure showed that flooding stress led to plasmolysis and organelle fragmentation of rape root cells. The organelle of strong and medium waterlogging resistant rape was less damaged, and it could maintain a more normal cell morphology under flooding stress. The relative transcriptional levels of cytoskeletal genes Bnamicrotubule1.A3, Bnatubulin-α2.C3, Bnatubulin-β7.C6, and Bnalamin-like.A2 in rape roots were significantly decreased under flooding stress, which were 0.2-0.5 times that of the control (CK) samples. The relative expressional levels of BnaPDH.C9, BnaLDH.A1, and BnaADH.A7 associated to anaerobic respiration were significantly increased, which was 3-6 times higher than that of CK, and higher expression levels were observed in medium and strong waterlogging tolerant rapeseed seedlings than in weak waterlogging tolerant line YZ59. During waterlogging, the activities of POD and SOD increased first and then decreased, while the activity of CAT and the content of MDA increased. Among them, the enzyme activities of YZ12 line such as POD, SOD, CAT were relatively high, and the increase of MDA was small. The photosynthetic efficiency and chlorophyll content of rapeseed leaves were seriously affected by flooding stress. The chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate of rapeseed decreased significantly, and the intercellular CO2 concentration increased significantly, and the change range of the weak waterlogging tolerant line YZ59 was larger than that of the other two lines. Under flooding stress, ET and ABA contents of rapeseed increased significantly. Among the three lines, YZ12 had higher ET content, while YZ59 had higher ABA content. The relative transcriptional levels of ET related genes BnaACO1.C8, BnaERF73.C6 were significantly up-regulated in the strong waterlogging tolerant line YZ12, while the relative transcriptional level of ABA-related gene BnaZEP.A7 was up-regulated in the weak waterlogging tolerant line YZ59. Exogenous application of hormone inhibitors could improve the damage of flooding stress to rapeseed, but the effects of different exogenous hormone inhibitors varied significantly. In conclusion, there were differences in physiological metabolism, photosynthesis, hormone, and gene transcriptional levels in response to flooding stress at seedling stage in B. napus with different waterlogging tolerance. B. napus responsed to flooding stress by regulating the relative transcription levels of genes related to cytoskeleton, anaerobic respiration, hormone metabolism, causing changes in antioxidant enzyme activity, hormone levels, photosynthetic efficiency, root ultrastructure and root vitality.

Key words: Brassica napus L., flooding stress, root ultrastructure, photosynthetic characteristics, antioxidant enzyme activity, hormone levels, transcriptional regulation

Table 1

Primer used for qRT-PCR"

基因编号
Gene ID
基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
XM_013825609.2 Bnatubulin-α2.C3 AACCATCAAGACCAAGCGCAC CCTCCTCATAATCCTTCTCCAG
XM_013846861.2 Bnatubulin-β7.C6 CGTCCAGAACAAGAACTCCTC GCTCGCTGACTCTCCTGAAC
XM_013847632.2 Bnalaminlike.A2 GCATCTCCGACCATCCTATCCG AAACAACCACCCCTTCCGTC
XM_013786846.2 Bnamicrotubule1.A3 GCATACGATGGTGTTCCTCTG CTCTACGTGTGGCTGTTCTTG
XM_013852099.3 BnaPDC.C9 TGCTCAAGCCATACCTAACAAACG CGCAGTCCAGCATTTACCTTCTC
XM_013794611.3 BnaADH.A7 GGATTGCTGGTGCTGGTAGGA GCGATGACTTGCTGAACTGGC
XM_013866109.3 BnaLDH.A1 TCCTCCGAGACCAGCGTAAGAT TTAGTCACAGCCACCACACCG
GU550519.1 BnaRGA.A9 ATCACTCTCTCTCCGACACGCTC GGACCACCTTCTCTCAACGCAA
XM_013788321.3 BnaGA3.A6 GGATAAGAAGCGTTGGGAGAAGC TCAACATTCTCTTCCTCACCGTCT
XM_013815976.3 BnaGA2ox2.C3 TGAAAGATGGAAGTTGGGTCGC GCAATCTTCTGGCTCAATGGG
NM_001315888.1 BnaZEP.A7 GCATTGTCGGAAGTGAACCAGA TGAGATAGGTCCCGTGTTCGC
XM_013788810.3 BnaNCED3.C1 ACCAGATACGCTTACCTCGCTT TGTAACCGTCGTCTTCGCCT
XM_013887010.1 BnaAAO.A4 GATTTAGGACAGGTGGAAGGAGC CACAATGAACCGAAGCCGC
XM_013804747.3 BnaACO1.C8 CGCCATCAAAGAACAACACCATT CTGGAGCTGGAGATATTACGGCA
XM_013893836.3 BnaEIN3.A5 CCAACGGTCCAGAATCATCAAGA GTTGTTGTTGTTGTTGGTGTGCG
XM_013845804.2 BnaERF73.C6 CAACTTCCCTAACGATTCTCCAGC CCGCATTGTTATTCTCCTCCCAC
NM_001316010.1 BnaACT.C2 CTGGAATTGCTGACCGTATGAG ATCTGTTGGAAAGTGCTGAGGG

Fig. 1

Morphology of B. napus with different water resistance under flooding stress for 6 days CK: normal water supply; T: waterlogging treatment for 6 days."

Table 2

Morphological indicators and root activity of B. napus lines after 6 days of waterlogging"

品系
Line
处理
Treatment
株高
Plant height
(cm)
叶长
Leaf length
(cm)
叶宽
Leaf width
(cm)
地上部鲜重
Fresh weight of shoot (g)
根长
Root length
(cm)
根系活力
Root activity
(mg g-1 h-1)
YZ12 CK 13.63±1.42 a 4.40±0.39 a 3.87±0.47 a 1.07±0.16 a 7.93±1.17 a 453.59±12.71 a
T 10.17±0.89 bc 2.40±0.38 c 2.07±0.16 c 0.70±0.02 bc 5.52±1.67 bc 385.07±23.59 b
YZ45 CK 11.35±1.70 b 3.90±0.86 ab 3.47±0.19 b 0.91±0.27 ab 6.85±0.96 ab 442.02±14.39 a
T 8.80±0.63 cd 2.25±0.21 c 1.98±0.27 c 0.55±0.06 c 3.97±1.14 cd 364.69±8.26 bc
YZ59 CK 10.98±1.39 b 3.57±0.31 b 3.53±0.40 ab 0.90±36.00 ab 8.08±1.78 a 462.23±35.66 a
T 8.27±1.01 d 1.90±0.12 c 1.72±0.12 c 0.26±0.18 c 3.12±1.17 c 325.93±26.33 c

Table 3

Grey correlation analysis of various indicators of three B. napus lines after 6 days of waterlogging"

指标
Index
根系活力
Root activity
叶宽
Leaf width
根长
Root length
叶长
Leaf length
株高
Plant height
关联度 Correlation degree 0.6211 0.6001 0.5938 0.5798 0.5465
排序 Order 1 2 3 4 5

Fig. 2

Ultrastructure of root cells in B. napus with different waterlogging tolerance CK: normal water supply; T: waterlogging treatment for 6 days; A, B, C: root cells ultrastructure of B. napus with different waterlogging tolerance under normal water supply conditions; D, E, F: ultrastructure of root cells in B. napus with different waterlogging tolerance under flooding stress."

Fig. 3

Transcription level of cytoskeleton related genes in roots CK: normal water supply; T: waterlogging treatment for 48 hours. Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 4

Transcription level analysis of anaerobic respiration related genes in roots CK: normal water supply; T: waterlogging treatment for 48 hours. Different lowercase letters indicate significant differences at the 0.05 probability level."

Fig. 5

Changes of hormone contents in B. napus with different waterlogging tolerance under flooding stress"

Fig. 6

Transcription level analysis of hormone metabolism related genes in roots CK: normal water supply; T: waterlogging treatment for 48 hours. Different lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 7

Effect of flooding stress on antioxidant enzyme activity and MDA content of B. napus Different lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 8

Effect of flooding stress on photosynthetic traits and total chlorophyll of B. napus Different lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 9

Correlation analysis between root activity and physiological indicators in B. napus The data in the figure is Pearson r. X1: root activity; X2: POD activity; X3: CAT activity; X4: SOD activity; X5: MDA content; X6: photosynthetic rate; X7: stomatal conductance; X8: intercellular CO2 concentration; X9: transpiration rate; X10: total chlorophyll content; X11: GA content; X12: ABA content; X13: ET content."

Fig. 10

Effects of exogenous application of growth regulators on the phenotype of B. napus under flooding stress CK: normal water supply; T1: flooding stress + spray distilled water; T2: flooding stress + spraying GA inhibitor UNICONAZOLE; T3: flooding stress + spraying ET inhibitor STS; T4: flooding stress + spraying ABA inhibitor NDGA."

Fig. 11

Effect of flooding stress on the growth of B. napus seedlings and its response mechanism A: A diagram representing the hormone-regulated root growth signaling pathway [12,50??-53]. The solid lines indicate direct interactions, and the dashed lines indicate indirect interactions. The arrows indicate stimulatory effects, whereas the ⊥ symbols indicate inhibitory effects. B: Physiological mechanism in response to waterlogging during seedling stage of B. napus."

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170-176.
doi: 10.3724/SP.J.1006.2010.00170
Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170-176. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00170
[3] 张佩, 吴洪颜, 江海东, 高苹, 徐敏. 长江中下游油菜春季湿渍害灾损风险评估研究. 气象与环境科学, 2019, 42(1): 11-17.
Zhang P, Wu H Y, Jiang H D, Gao P, Xu M. Risk assessment study on rapeseed suffering from spring wet damages in the middle and lower reaches of Yangtze River. Meteorol Environ Sci, 2019, 42(1): 11-17. (in Chinese with English abstract)
[4] Wang Z Y, Han Y L, Luo S, Rong X M, Song H X, Jiang N, Li C W, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Front Plant Sci, 2022, 13: 1048227.
doi: 10.3389/fpls.2022.1048227
[5] 杨海云, 艾雪莹, Batool M, 刘芳, 蒯婕, 王晶, 汪波, 周广生. 油菜响应水分胁迫的生理机制及栽培调控措施研究进展. 华中农业大学学报, 2021, 40(2): 6-16.
Yang H Y, Ai X Y, Batool M, Liu F, Kuai J, Wang J, Wang B, Zhou G S. Progress on physiological mechanisms of response to water stress and measures of cultivation controlling in rapeseed. J Huangzhong Agric Univ, 2021, 40(2): 6-16. (in Chinese with English abstract)
[6] 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 98-102.
Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2007, 29: 98-102. (in Chinese with English abstract)
[7] Champolivier L, Merricen A. Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron, 1996, 5: 153-160.
doi: 10.1016/S1161-0301(96)02004-7
[8] 俄有浩, 马玉平. 农田涝渍灾害研究进展. 自然灾害学报, 2022, 31(4):12-30.
E Y H, Ma Y P. Advances in research on cropland waterlogging disaster. Nat Dis, 2022, 31(4): 12-30. (in Chinese with English abstract)
[9] 张树杰, 廖星, 胡小加, 谢立华, 余常兵, 李银水, 车志, 廖祥生. 渍水对油菜苗期生长及生理特性的影响. 生态学报, 2013, 33: 7382-7389.
Zhang S J, Liao X, Hu X J, Xie L H, Yu C B, Li Y S, Che Z, Liao X S. Effects of waterlogging on the growth and physiological properties of juvenile oilseed rape. Acta Ecol Sin, 2013, 33: 7382-7389. (in Chinese with English abstract)
[10] Li J J, Iqbal S, Zhang Y T, Chen Y H, Tan Z D, Ali U, Guo L. Transcriptome analysis reveals genes of flooding-tolerant and flooding-sensitive rapeseeds respond to flooding at the germination stage. Plants, 2021, 10: 693.
doi: 10.3390/plants10040693
[11] Kuroha T, Nagai K, Gamuyao R, Wang D, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch S, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361: 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253
[12] Qin H, He L, Huang R F. The coordination of ethylene and other hormones in primary root development. Front Plant Sci, 2019, 10: 874.
doi: 10.3389/fpls.2019.00874 pmid: 31354757
[13] Fukushima A, Kuroha T, Nagai K, Hattori Y, Kobayashi M, Nishizawa T, Kojima M, Utsumi Y, Oikawa A, Seki M, Sakakibara H, Saito K, Ashikari M, Kusano M. Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites, 2020, 10: 68.
doi: 10.3390/metabo10020068
[14] Cheng Y, Gu M, Cong Y, Zou C S, Zhang X K, Wang H Z. Combining ability and genetic effects of germination traits of Brassica napus L. under waterlogging stress condition. Agric Sci China, 2010, 9: 951-957.
doi: 10.1016/S1671-2927(09)60176-0
[15] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by application of uniconazole: effects on morphological characteristics, hormones and photosynthesis. Field Crops Res, 1998, 59: 121-127.
doi: 10.1016/S0378-4290(98)00112-9
[16] 何激光, 官春云, 李凤阳, 阴长发. 不同渍水处理对油菜产量及生理特性的影响. 作物研究, 2011, 25: 313-315.
He J G, Guan C Y, Li F Y, Yin C F. Effects of different waterlogging treatments on the yield and physiological characteristics of rape. Crop Res, 2011, 25: 313-315 (in Chinese with English abstract).
[17] 李玲, 张春雷, 张树杰, 李光明. 渍水对冬油菜苗期生长及生理的影响. 中国油料作物学报, 2011, 33: 247-252.
Li L, Zhang C L, Zhang S J, Li G M. Effects of waterlogging on growth and physiological changes of winter rapeseed seedling (Brassica napus L.). Chin J Oil Crop Sci, 2011, 33: 247-252. (in Chinese with English abstract)
[18] Kuai J, Li X Y, Xie Y, Li Z, Wang B, Zhou G S. Leaf characteristics at recovery stage affect seed oil and protein content under the interactive effects of nitrogen and waterlogging in rapeseed. Agriculture, 2020, 10: 207.
doi: 10.3390/agriculture10060207
[19] 张维, 李云, 戚存扣, 陈松, 王晓东. 淹水胁迫对耐淹和不耐淹油菜光合参数影响差异的研究. 中国农学通报, 2019, 35(7): 28-35.
doi: 10.11924/j.issn.1000-6850.casb18090105
Zhang W, Li Y, Qi C K, Chen S, Wang X D. Effects of waterlogging stress on photosynthetic parameters of waterlogging-tolerant and susceptible rapeseed lines. Chin Agric Sci Bull, 2019, 35(7): 28-35. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18090105
[20] 谢云韵, 余常兵, 侯加佳, 胡小加, 李银水, 沈宏, 廖星. 低氧胁迫对油菜幼苗不定根生长的影响. 中国油料作物学报, 2013, 35: 284-289.
doi: 10.7505/j.issn.1007-9084.2013.03.009
Xie Y Y, Yu C B, Hou J J, Hu X J, Li Y S, Shen H, Liao X. Effect of low oxygen stress on adventitious roots of rape seedlings. Chin J Oil Crop Sci, 2013, 35: 284-289 (in Chinese with English abstract).
[21] Guo Y Y, Chen J, Kuang L H, Wang N J, Zhang G P, Jiang L X, Wu D Z. Effects of waterlogging stress on early seedling development and transcriptomic responses in Brassica napus. Mol Breed, 2020, 40: 4917-4929.
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. (in Chinese)
[23] 杨志敏. 生物化学实验. 北京: 高等教育出版社, 2015.
Yang Z M. Biochemistry Experiments. Beijing: Higher Education Press, 2015. (in Chinese)
[24] 徐爱军, 高桂枝, 汤莉莉. 梯度洗脱测定植物源调节剂中内源激素方法探讨. 分析试验室, 2007, 26(9): 51-55.
Xu A J, Gao G Z, Tang L L. Study on the determination of intrinsic hormones in plant growth regulator from plants by HPLC with gradient elution. Chin J Anal Lab, 2007, 26(9): 51-55. (in Chinese with English abstract)
[25] Ali B, Qian P, Sun R, Farooq M A, Gill R A, Wang J, Azam M, Zhou W J. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant. Environ Sci Pollut Res Int, 2015, 22: 3068-3081.
doi: 10.1007/s11356-014-3551-y
[26] 徐国伟, 孙会忠, 陆大克, 王贺正, 李友军. 不同水氮条件下水稻根系超微结构及根系活力差异. 植物营养与肥料学报, 2017, 23: 811-820.
Xu G W, Sun H Z, Lu D K, Wang H Z, Li Y J. Differences in ultrastructure and activity of rice roots under different irrigation and nitrogen supply levels. J Plant Nutr Fert, 2017, 23: 811-820. (in Chinese with English abstract)
[27] 胡亚丽, 聂靖芝, 吴霞, 潘姣, 曹珊, 岳娇, 罗登杰, 王财金, 李增强, 张辉, 吴启境, 陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响. 中国农业科学, 2022, 55: 2696-2708.
doi: 10.3864/j.issn.0578-1752.2022.14.002
Hu Y L, Nie J Z, Wu X, Pan J, Cao S, Yue J, Luo D J, Wang C J, Li Z Q, Zhang H, Wu Q J, Chen P. Effect of salicylic acid priming on salt tolerance of kenaf seedlings. Sci Agric Sin, 2022, 55: 2696-2708. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.14.002
[28] Hong B, Zhou B Q, Peng Z C, Yao M Y, Wu J J, Wu X P, Guan C Y, Guan M. Tissue-specific transcriptome and metabolome analysis reveals the response mechanism of Brassica napus to waterlogging stress. Int J Mol Sci, 2023, 24: 3-23.
doi: 10.3390/ijms24010003
[29] Zou X L, Tan X Y, Hu C W, Zeng L, Lu G Y, Fu G P, Cheng Y, Zhang X K. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. Int J Mol Sci, 2013, 14: 2637-2651.
doi: 10.3390/ijms14022637
[30] Zou X L, Zeng L, Lu G Y, Xu J S, Zhang X K. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L. J Integr Agric, 2015, 14: 1723-1734.
doi: 10.1016/S2095-3119(15)61138-8
[31] Peng Y J, Zhao Z X, Tong R G, Hu X Y, Du K B. Anatomy and ultrastructure adaptations to soil flooding of two full-sib poplar clones differing in flood-tolerance. Flora, 2017, 233: 90-98.
doi: 10.1016/j.flora.2017.05.014
[32] Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681.
doi: 10.3390/antiox9080681
[33] Cheng X X, Yu M, Zhang N, Zhou Z Q, Xu Q T, Mei F Z, Qu L H. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma, 2016, 253: 311-327.
doi: 10.1007/s00709-015-0811-8
[34] 陶霞, 李慧琳, 万林, 周琴, 江海东. 叶面喷施吲哚乙酸对油菜蕾薹期渍水的缓解效应. 中国油料作物学报, 2015, 37: 55-61.
doi: 10.7505/j.issn.1007-9084.2015.01.009
Tao X, Li H L, Wan L, Zhou Q, Jiang D H. Alleviation effects of IAA foliar spray on waterlogging stressed rapeseed at budding stage. Chin J Oil Crop Sci, 2015, 37: 55-61. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2015.01.009
[35] Zhang J Y, Huang S N, Wang G, Xuan P J, Guo Z R. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 2016, 106: 244-252.
doi: 10.1016/j.plaphy.2016.05.009
[36] 魏和平, 利容千, 王建波. 淹水对玉米叶片细胞超微结构的影响. 植物学报, 2000, 42: 811-817.
Wei H P, Li R Q, Wang J B. Ultrastructural changes in leaf cells of submerged maize. Acta Bot Sin, 2000, 42: 811-817. (in Chinese with English abstract)
[37] Zhang R D, Zhou Y F, Yue Z X, Chen X F, Cao X, Xu X X, Xing Y F, Jiang B, Ai X Y, Huang R D. Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica, 2019, 57: 1076-1083.
doi: 10.32615/ps.2019.124
[38] Reinbardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 2000, 12: 507-518.
doi: 10.1105/tpc.12.4.507 pmid: 10760240
[39] Hinz M, Wilson I W, Yang J, Buerstenbinder K, Llewellyn D, Dennis E S, Sauter M, Dolferus R. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol, 2010, 153: 757-772.
doi: 10.1104/pp.110.155077 pmid: 20357136
[40] Licausi F, Van Dongen J T, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J, 2010, 62: 302-315.
[41] Nguyen T N, Tuan P A, Mukherjee S, Son S H, Ayeke B T. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J Exp Bot, 2018, 69: 4065-4082.
doi: 10.1093/jxb/ery190
[42] 谢伶俐, 韦丁一, 章子爽, 徐劲松, 张学昆, 许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系. 中国农业科学, 2022, 55: 4793-4807.
doi: 10.3864/j.issn.0578-1752.2022.24.002
Xie L L, Wei D Y, Zhang Z S, Xu J S, Zhang X K, Xu B B. Dynamic changes of gibberellin content during the development and the relationship between gibberellin and yield of Brassica napus L.. Sci Agric Sin, 2022, 55: 4793-4807. (in Chinese with English abstract)
[43] O’neill D P, Davidson S E, Clarke V C, Yamauchi Y, Yamauchi S, Kamiya Y, Reid J B, Ross J J. Regulation of the gibberellins pathway by auxin and DELLA proteins. Planta, 2010, 232: 1141-1149.
doi: 10.1007/s00425-010-1248-0
[44] Sharp R E, Lenoble M E. ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot, 2002, 53: 33-37.
pmid: 11741038
[45] Kim Y H, Hwang S J, Waqas M, Khan A L, Lee J H, Lee J D, Nguyen H T, Lee I J. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci, 2015, 6: 714.
[46] De S L, Signora L, Beeckman T, Inze D, Foyer C H, Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J, 2003, 33: 543-555.
doi: 10.1046/j.1365-313X.2003.01652.x
[47] Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D L, Yang P F. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res, 2013, 12: 4769-4784.
doi: 10.1021/pr4001898 pmid: 23808807
[48] Saha I, Hasanuzzaman M, Dolui D, Sikdar D, Debnath S C, Adak M K. Silver-nanoparticle and abscisic acid modulate sub1A quantitative trait loci functioning towards submergence tolerance in rice (Oryza sativa L.). Environ Exp Bot, 2021, 181: 104276.
doi: 10.1016/j.envexpbot.2020.104276
[49] Wang S Y, Zhou H, Feng N J, Xiang H T, Liu Y, Wang F, Li W, Feng S J, Liu M L, Zheng D F. Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage. J Plant Physiol, 2022, 268: 153579.
doi: 10.1016/j.jplph.2021.153579
[50] 王琼. 几种植物生长调节剂对油菜渍害的缓解作用及机理研究. 中国农业科学院硕士学位论文, 北京, 2012.
Wang Q. Studies on Mitigative Effects of Plant Growth Regulators on Rapeseed Subjected to Waterlogging. MS Thesis of Chinese Academy of Agricultural Sciences Dissertation, Beijing, China, 2012. (in Chinese with English abstract)
[51] Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J R, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91-94.
doi: 10.1126/science.1118642 pmid: 16400150
[52] Ma B, Yin C C, He S J, Lu X, Zhang W K, Lu T G, Chen S Y, Zhang J S. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet, 2014, 10: e1004701.
doi: 10.1371/journal.pgen.1004701
[53] Li Z F, Zhang L X, Yu Y W, Quan R D, Zhang Z J, Zhang H W, Huang R F. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J, 2011, 68: 88-99.
doi: 10.1111/tpj.2011.68.issue-1
[1] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[2] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[3] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[4] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[5] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[6] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, WANG Meng, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
[7] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[8] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[9] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[10] LI Ji-Jun, CHEN Ya-Hui, WANG Yi-Jin, ZHOU Zhi-Hua, GUO Zi-Yue, ZHANG Jian, TU Jin-Xing, YAO Xuan, GUO Liang. Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(12): 3162-3175.
[11] GAO Chao, CHEN Ping, DU Qing, FU Zhi-Dan, LUO Kai, LIN Ping, LI Yi-Ling, LIU Shan-Shan, YONG Tai-Wen, YANG Wen-Yu. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 3090-3099.
[12] WANG Hai-Qi, WANG Rong-Rong, JIANG Gui-Ying, YIN Hao-Jie, YAN Shi-Jie, CHE Zi-Qiang. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves [J]. Acta Agronomica Sinica, 2023, 49(1): 211-224.
[13] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[14] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[15] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .