Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 728-743.doi: 10.3724/SP.J.1006.2025.42026

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality

XIONG Qiang-Qiang(), SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan(), ZHANG Hong-Cheng()   

  1. Research Institute of Rice Industrial Engineering Technology, Yangzhou University / Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2023-12-01 Accepted:2024-01-31 Online:2025-03-12 Published:2024-11-12
  • Contact: *E-mail: zhujinyanrain@163.com; E-mail: hczhang@yzu.edu.cn.
  • Supported by:
    Zhenjiang “Jinshan Talents” Industry Strong City Leading Talent Introduction Plan(Zhenjiang Talent Office [2021] 1);Key R & D Projects in Jiangsu Province(BE2019342);Jiangsu Province Seed Industry Revitalization Project(JBGS [2021] 036);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

Abstract:

This study evaluated 70 glutinous rice varieties (lines) to identify high-quality, high-yield varieties suitable for cultivation in the Yangzhong region, based on comprehensive assessments of growth period, yield, and rice quality. The experiment was conducted in Yangzhong city, Jiangsu province, from 2021 to 2023, using a randomized block design with three replicates. The results showed the following: (1) The growth periods of the 70 glutinous rice varieties ranged from 137 to 159 days in 2021 and from 139 to 158 days in 2023. Based on the growth period, the varieties were classified into three categories: 17 early-maturing late-japonica types, 18 mid-maturing mid-japonica types, and 35 late-maturing mid-japonica types. (2) In 2021, yields ranged from 5.19 to 9.50 t hm-2, and in 2023, yields ranged from 5.57 to 9.64 t hm-2. Principal component analysis indicated that the number of grains per panicle and panicle number were the primary factors influencing yield traits. (3) In 2021, the brown rice rate ranged from 80.45% to 87.35%, and the milled rice rate from 59.86% to 75.87%. Twenty varieties met the first-class quality standard, while 16 met the second-class quality standard. In 2023, the brown rice rate ranged from 81.60% to 88.50%, and the milled rice rate from 65.07% to 75.59%. Fifteen varieties met the first-class quality standard, and 18 met the second-class quality standard. In 2021, protein content varied from 7.00% to 10.77%, and total starch content from 69.42% to 92.73%. In 2023, protein content ranged from 7.00% to 10.79%, and total starch content from 68.00% to 92.68%. Molecular marker analysis revealed that 35 rice varieties carried the badh2 gene. Based on the comprehensive analysis of growth period, yield, and quality, four high-yield and high-quality glutinous rice varieties (lines) suitable for cultivation in Yangzhong were selected: Yangruannuo 2, Sunuo 7132, Yangjingnuo 2, and Yandao 93207.

Key words: glutinous rice, Yangzhong region, growth period, yield, rice quality

Fig. 1

Average temperature and precipitation during the rice growing season from 2021 to 2023"

Table 1

Survey on the growth period of glutinous rice varieties (lines)"

品种
Variety
编号
Number
2021年
全生育期
Full fertility period in 2021 (d)
2023年
全生育期
Full fertility period in 2023 (d)
生育
类型
Fertility type
品种
Variety
编号
Number
2021年
全生育期
Full fertility period in 2021 (d)
2023年
全生育期
Full fertility period in 2023 (d)
生育
类型
Fertility type
灵谷糯1号 Linggunuo 1 YZ01 159 156 EL 盐稻93207 Yandao 93207 YZ36 149 147 LM
武糯9612 Wunuo 9612 YZ02 150 151 LM 绿亿香糯 Lyuyixiangnuo YZ37 140 142 MM
皖垦糯2号 Wankennuo 2 YZ03 155 153 LM 粳香糯398 Jingxiangnuo 398 YZ38 143 143 MM
张育糯2号 Zhangyunuo 2 YZ04 151 152 LM 镇糯20号Zhennuo 20 YZ39 152 151 LM
金单糯100 Jindanuo 100 YZ05 152 152 LM 武糯9606 Wunuo 9606 YZ40 148 147 LM
镇糯29 Zhennuo 29 YZ06 151 152 LM 中粳糯588 Zhongjingnuo 588 YZ41 150 148 LM
武香糯9214 Wuxiangnuo 9214 YZ07 152 153 LM 喜粳糯68 Xijingnuo 68 YZ42 157 158 EL
扬产糯1号Yangchannuo 1 YZ08 146 148 LM 恒祥糯10号Hengxiangnuo 10 YZ43 144 144 MM
苏糯9202 Sunuo 9202 YZ09 152 151 LM 皖稻68 Wandao 68 YZ44 149 148 LM
金单糯8917 Jindanuo 8917 YZ10 148 149 LM 皖垦糯1116 Wankennuo 1116 YZ45 158 157 EL
镇糯19号 Zhennuo 19 YZ11 145 147 LM 中科盐2号Zhongkeyan 2 YZ46 148 145 LM
扬粳糯5号Y angjingnuo 5 YZ12 156 157 EL 盐稻93015 Yandao 93015 YZ47 138 141 MM
武香糯7368 Wuxiangnuo 7368 YZ13 156 156 EL 武香糯366 Wuxiangnuo 366 YZ48 141 144 MM
苏糯2621 Sunuo 2621 YZ14 155 153 LM 武香糯109 Wuxiangnuo 109 YZ49 146 148 LM
裕丰糯446 Yufengnuo 446 YZ15 150 148 LM 南粳糯2号Nanjingnuo 2 YZ50 146 148 LM
优香糯1号Youxiangnuo 1 YZ16 148 146 LM 丰粳糯203 Fengjingnuo 203 YZ51 140 142 MM
金香糯1号Jinxiangnuo 1 YZ17 155 153 LM 武育糯4819 Wuyunuo 4819 YZ52 158 157 EL
扬产糯2002 Yangchannuo 2002 YZ18 152 150 LM 皖垦糯3号Wankennuo 3 YZ53 155 153 LM
镇糯762 Zhennuo 762 YZ19 157 156 EL 丰糯1246 Fengnuo 1246 YZ54 142 143 MM
扬软糯2号Yangruannuo 2 YZ20 152 150 LM 皖垦糯1号Wankennuo 1 YZ55 158 156 EL
常糯09-3 Changnuo 09-3 YZ21 152 152 LM 淮糯152 Huainuo 152 YZ56 143 143 MM
银糯19 Yinnuo 19 YZ22 159 157 EL 淮糯134 Huainuo 134 YZ57 142 144 MM
扬粳M9225 Yangjing M9225 YZ23 159 156 EL 武育糯366 Wuyunuo 366 YZ58 145 145 LM
荃香糯3号 Quanxiangnuo 3 YZ24 158 158 EL 泗稻20-8 Sidao 20-8 YZ59 142 144 MM
光明糯1号 Guangmingnuo 1 YZ25 150 151 LM 连香糯516 Lianxiangnuo 516 YZ60 144 143 MM
苏糯7132 Sunuo 7132 YZ26 156 156 EL 中种香糯Zhongzhongxiangnuo YZ61 137 139 MM
南粳香糯Nanjingxiangnuo YZ27 156 156 EL 泉糯669 Quannuo 669 YZ62 141 142 MM
常糯2号Changnuo 2 YZ28 157 158 EL 恒祥糯9号Hengxiangnuo 9 YZ63 140 142 MM
扬农糯18-3370 Yangnongnuo 18-3370 YZ29 157 157 EL 皖垦糯5号Wankennuo 5 YZ64 154 153 LM
徐72909 Xu 72909 YZ30 149 148 LM 金丰糯2号Jinfengnuo 2 YZ65 139 141 MM
武香糯9106 Wuxiangnuo 9106 YZ31 152 150 LM 华浙糯1号Huazhe Nuo 1 YZ66 151 147 LM
丰登糯398 Fengdengnuo 398 YZ32 154 154 LM 盐糯13138 Yannuo 13138 YZ67 144 144 MM
武育糯180 Wuyunuo 180 YZ33 156 156 EL 连粳18307 Lianjing 18307 YZ68 143 142 MM
武香糯106 Wuxiangnuo 106 YZ34 153 150 LM 盐糯1716 Yannuo 1716 YZ69 144 142 MM
扬粳糯2号Yangjingnuo 2 YZ35 156 157 EL 金粳糯6288 Jinjingnuo 6288 YZ70 145 145 LM

Table 2

Information on functionally labeled primers used for detection of rice aroma genes"

基因
Gene
染色体Chromosome 标记
Marker
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
参考文献
Reference
badh2 8 FMbadh2-E7 GGTTGCATTTACTGGGAGTT CAGTGAAACAGGCTGTCAAG [25]

Table 3

Differences in yield and components of glutinous rice varieties"

年份
Year
指标
Index
穗长
Length of panicle (cm)
穗数
Panicles
(×104 hm-2)
每穗粒数
Grains per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
实测产量
Harvest yield (t hm-2)
2021 最大值Maximum value 21.49 356.45 165.43 98.42 32.44 9.50
最小值Minimum value 13.35 197.78 93.63 78.15 22.60 5.19
平均值Average value 16.50 285.79 125.78 94.15 27.93 7.79
标准差Standard deviation 1.36 36.52 15.62 3.65 1.78 0.87
变异系数Coefficient of variation 0.08 0.13 0.12 0.04 0.06 0.11
2023 最大值Maximum value 19.70 353.52 170.90 97.79 30.81 9.64
最小值Minimum value 13.95 195.60 94.64 78.79 23.37 5.57
平均值Average value 16.73 278.46 131.37 94.47 27.63 7.94
标准差Standard deviation 1.27 32.98 16.23 2.91 1.43 0.84
变异系数Coefficient of variation 0.08 0.12 0.12 0.03 0.05 0.11

Table 4

Correlation analysis of yields and components of glutinous rice varieties"

年份
Year
指标
Index
穗长
Length of panicle
每穗粒数
Grains per panicle
千粒重
1000-grain weight
结实率
Seed-setting rate
穗数
Panicles
2021 穗长Length of panicle 1.000
每穗粒数Grains per panicle 0.627** 1.000
千粒重1000-grain weight 0.115 -0.206 1.000
结实率Seed-setting rate -0.144 -0.320** 0.158 1.000
穗数Panicles -0.167 -0.334** -0.238* -0.068 1.000
实测产量Harvest yield 0.090 0.139 0.137 -0.180 0.256*
2023 穗长Length of panicle 1.000
每穗粒数Grains per panicle 0.426** 1.000
千粒重1000-grain weight 0.029 -0.313** 1.000
结实率Seed-setting rate -0.051 -0.290* 0.231 1.000
穗数Panicles -0.055 -0.276* -0.314** 0.063 1.000
实测产量Harvest yield 0.098 0.120 0.019 -0.032 0.280*

Table 5

Principal component analysis of various indicators of glutinous rice varieties"

年份Year 指标Index 第1主成分PC1 第2主成分PC2 第3主成分PC3
2021 特征值Eigenvalue 1.897 1.405 1.166
贡献率Contribution rate 31.621 23.418 19.438
累积贡献率Cumulative contribution rate 31.621 55.039 74.478
穗长Length of panicle 0.801 -0.137 0.155
每穗粒数Grains per panicle 0.916 0.016 -0.154
结实率Seed-setting rate -0.477 -0.523 0.066
千粒重1000-grain weight -0.060 -0.523 0.768
穗数Panicles -0.381 0.760 0.127
实测产量Harvest yield 0.201 0.511 0.713
2023 特征值Eigenvalue 1.714 1.416 1.137
贡献率Contribution rate 28.561 23.605 18.945
累积贡献率Cumulative contribution rate 28.561 52.166 71.111
穗长Length of panicle 0.581 -0.205 0.537
每穗粒数Grains per panicle 0.877 -0.167 0.052
结实率Seed-setting rate -0.573 -0.082 0.402
千粒重1000-grain weight -0.472 -0.577 0.478
穗数Panicles -0.157 0.882 0.126
实测产量Harvest yield 0.178 0.477 0.663

Table 6

Yield cluster analysis results of glutinous rice varieties (lines)"

年份
Year
类型
Type
实测产量变幅
Harvest yield
variation
(t hm-2)
平均实测产量
Average
harvest yield
(t hm-2)
千粒重变幅
1000-grain
weight variation (g)
平均千粒重
Average 1000-grain weight
(g)
品种(系)
Varieties
(lines)
2021 I 8.10-9.50 8.62 29.19-32.44 30.14 YZ02, YZ06, YZ07, YZ10, YZ20, YZ26, YZ29, YZ35, YZ36
II 6.99-8.05 7.53 27.06-29.07 28.23 YZ05, YZ11, YZ16, YZ19, YZ23, YZ25, YZ31, YZ32, YZ34, YZ46, YZ47, YZ50, YZ59, YZ65
III 5.19-6.78 6.14 22.60-26.88 25.89 YZ60, YZ66, YZ68
2023 I 8.36-9.64 8.83 28.07-30.81 28.93 YZ06, YZ10, YZ15, YZ17, YZ20, YZ26, YZ29, YZ30, YZ35, YZ36, YZ39, YZ42, YZ48, YZ58
II 7.15-8.27 7.73 26.12-27.92 27.01 YZ05, YZ09, YZ12, YZ19, YZ24, YZ25, YZ37, YZ44, YZ45, YZ50, YZ51, YZ53, YZ57, YZ61, YZ65, YZ66, YZ70
III 5.57-6.89 6.39 23.37-26.00 25.20 YZ60

Table 7

Differences in processing quality of glutinous rice varieties"

年份
Year
指标
Index
糙米率
Brown rice rate (%)
精米率
Rice polishing rate (%)
整精米率
Whole rice rate (%)
2021 最大值Maximum value 87.35 75.87 72.75
最小值Minimum value 80.45 59.86 25.49
平均值Average value 84.56 70.82 58.86
标准差Standard deviation 1.38 3.10 10.87
变异系数Coefficient of variation 0.02 0.04 0.18
2023 最大值Maximum value 88.50 75.59 70.15
最小值Minimum value 81.60 65.07 27.47
平均值Average value 85.00 71.36 57.86
标准差Standard deviation 1.43 2.67 10.24
变异系数Coefficient of variation 0.02 0.04 0.18

Table 8

Differences in nutritional quality of glutinous rice varieties"

年份
Year
指标
Index
蛋白质含量
Protein content (%)
总淀粉含量
Total starch content (%)
直链淀粉含量
Amylose content (%)
2021 最大值Maximum value 10.77 92.73 3.70
最小值Minimum value 7.00 69.42 0.59
平均值Average value 8.44 82.53 1.39
标准差Standard deviation 0.97 4.28 0.53
变异系数Coefficient of variation 0.11 0.05 0.38
2023 最大值Maximum value 10.79 92.68 3.65
最小值Minimum value 7.00 68.00 0.52
平均值Average value 8.34 82.48 1.38
标准差Standard deviation 0.92 4.25 0.51
变异系数Coefficient of variation 0.11 0.05 0.37

Table 9

Detection of aroma genes in glutinous rice varieties (lines)"

品种编号
Variety number
是否携带badh2
Whether to carry badh2
品种编号
Variety number
是否携带badh2
Whether to carry badh2
品种编号
Variety number
是否携带badh2
Whether to carry badh2
品种编号
Variety number
是否携带badh2
Whether to carry badh2
YZ01 否No YZ19 是Yes YZ37 是Yes YZ55 否No
YZ02 是Yes YZ20 是Yes YZ38 否No YZ56 是Yes
YZ03 否No YZ21 是Yes YZ39 否No YZ57 否No
YZ04 否No YZ22 是Yes YZ40 是Yes YZ58 是Yes
YZ05 否No YZ23 否No YZ41 否No YZ59 否No
YZ06 否No YZ24 否No YZ42 是Yes YZ60 否No
YZ07 是Yes YZ25 否No YZ43 是Yes YZ61 是Yes
YZ08 否No YZ26 是Yes YZ44 否No YZ62 否No
YZ09 否No YZ27 是Yes YZ45 是Yes YZ63 是Yes
YZ10 否No YZ28 否No YZ46 否No YZ64 否No
YZ11 是Yes YZ29 是Yes YZ47 是Yes YZ65 否No
YZ12 是Yes YZ30 否No YZ48 是Yes YZ66 否No
YZ13 否No YZ31 是Yes YZ49 否No YZ67 否No
YZ14 是Yes YZ32 是Yes YZ50 否No YZ68 否No
YZ15 是Yes YZ33 是Yes YZ51 否No YZ69 是Yes
YZ16 是Yes YZ34 是Yes YZ52 是Yes YZ70 否No
YZ17 否No YZ35 是Yes YZ53 是Yes
YZ18 是Yes YZ36 是Yes YZ54 否No

Table 10

Correlation analysis of processing quality and nutritional quality of glutinous rice varieties"

年份
Year
指标
Index
糙米率
Brown rice
rate
精米率
Rice polishing rate
整精米率
Whole rice
rate
直链淀粉含量
Amylose
content
蛋白质含量
Protein
content
2021 糙米率Brown rice rate 1.000 / / / /
精米率Rice polishing rate 0.584** 1.000 / / /
整精米率Whole rice rate 0.422** 0.767** 1.000 / /
直链淀粉含量Amylose content -0.257* -0.037 -0.037 1.000 /
蛋白质含量Protein content -0.206 -0.216 -0.256* 0.165 1.000
总淀粉含量Total starch content 0.197 0.212 0.131 -0.158 -0.092
2023 糙米率Brown rice rate 1.000 / / / /
精米率Rice polishing rate 0.500** 1.000 / / /
整精米率Whole rice rate 0.403** 0.578** 1.000 / /
直链淀粉含量Amylose content 0.039 -0.010 -0.040 1.000 /
蛋白质含量Protein content -0.170 -0.082 -0.227 0.198 1.000
总淀粉含量Total starch content 0.214 0.039 0.142 -0.187 -0.132

Table 11

Principal component analysis of various indicators of different glutinous rice varieties"

年份 Year 指标 Index 第1主成分 PC1 第2主成分 PC2
2021 特征值Eigenvalue 2.431 1.135
贡献率Contribution rate 40.515 18.914
累积贡献率Cumulative contribution rate 40.515 59.429
糙米率Brown rice rate 0.764 -0.095
精米率Rice polishing rate 0.879 0.312
整精米率Whole rice rate 0.817 0.355
直链淀粉含量Amylose content -0.273 0.811
蛋白质含量Protein content -0.445 0.254
总淀粉含量Total starch content 0.369 -0.425
2023 特征值Eigenvalue 1.874 1.238
贡献率Contribution rate 31.225 20.639
累积贡献率Cumulative contribution rate 31.225 51.864
糙米率Brown rice rate 0.532 0.033
精米率Rice polishing rate 0.752 0.455
整精米率Whole rice rate 0.761 0.278
直链淀粉含量Amylose content -0.483 0.429
蛋白质含量Protein content 0.407 -0.522
总淀粉含量Total starch content -0.216 0.705

Table 12

Cluster analysis results of rice quality of glutinous rice varieties (lines)"

年份
Year
类型
Type
指标
Index
变幅
Variation (%)
平均值
Average value (%)
品种编号
Variety number
2021 I 蛋白质含量Protein content 7.30-8.83 7.73 YZ01, YZ05, YZ27, YZ35, YZ40, YZ55, YZ67
总淀粉含量Total starch content 77.96-85.15 82.32
直链淀粉含量Amylose content 0.64-1.15 0.96
II 蛋白质含量Protein content 7.03-7.63 7.37 YZ09, YZ25, YZ26, YZ43, YZ62
总淀粉含量Total starch content 85.53-92.73 88.73
直链淀粉含量Amylose content 1.46-1.79 1.58
III 蛋白质含量Protein content 8.07-8.97 8.53 YZ20, YZ29, YZ30, YZ33, YZ36, YZ37, YZ46, YZ50, YZ51
总淀粉含量Total starch content 84.22-87.94 86.10
直链淀粉含量Amylose content 0.64-1.27 0.95
2023 I 蛋白质含量Protein content 7.21-7.89 7.44 YZ01, YZ05, YZ27, YZ35, YZ67
总淀粉含量Total starch content 78.46-81.48 81.67
直链淀粉含量Amylose content 0.93-1.13 1.02
II 蛋白质含量Protein content 7.00-7.79 7.37 YZ09, YZ19, YZ25, YZ26, YZ34, YZ43, YZ62
总淀粉含量Total starch content 83.93-92.68 87.29
直链淀粉含量Amylose content 1.30-1.71 1.49
III 蛋白质含量Protein content 8.10-8.88 8.48 YZ08, YZ20, YZ29, YZ30, YZ33, YZ36, YZ37, YZ51
总淀粉含量Total starch content 84.27-87.67 86.02
直链淀粉含量Amylose content 0.72-1.22 0.96
[1] 毛娟芬. 水稻种植技术优化要点. 新农业, 2022, (23): 8-9.
Mao J F. Key points of optimization of rice planting technology. Mod Agric, 2022, (23): 8-9 (in Chinese).
[2] 孙统庆, 李杰, 陈震. 江苏水稻均衡性增产的思考. 中国稻米, 2021, 27(6): 34-37.
doi: 10.3969/j.issn.1006-8082.2021.06.007
Sun T Q, Li J, Chen Z. Thoughts on the balanced yield increase of rice in Jiangsu. China Rice, 2021, 27(6): 34-37 (in Chinese with English abstract).
[3] 蔡嘉鑫. 机插条件下播期对不同熟期类型粳稻产量、稻米品质及有关生理生态特征的影响. 扬州大学硕士学位论文, 江苏扬州, 2023.
Cai J X. Effects of Sowing Date on Yield, Rice Quality and Related Physiological and Ecological Characteristics of Japonica Rice with Different Maturity Types under Mechanical Transplanting. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[4] 张柏祥. 关于扬中市乡村振兴战略实施情况的调查. 农业装备技术, 2023, 49(6): 60-61.
Zhang B X. Investigation on the implementation of rural revitalization strategy in Yangzhong city. Agric Equip Technol, 2023, 49(6): 60-61 (in Chinese).
[5] 蔡剑. 江苏扬中市水稻品种试种效果及其推广应用. 农业工程技术, 2022, 42(2): 23-24.
Cai J. Effect of rice variety trial and its popularization and application in Yangzhong city, Jiangsu province. Agric Eng Technol, 2022, 42(2): 23-24 (in Chinese).
[6] 田可, 钱婉铷. 绿色食品香糯稻生产技术规程. 农业装备技术, 2020, 46(2): 35-37.
Tian K, Qian W R. Technical regulations for the production of green food fragrant glutinous rice. Agric Equip Technol, 2020, 46(2): 35-37 (in Chinese).
[7] Qiu S, Abbaspourrad A, Padilla-Zakour O I. Prevention of the retrogradation of glutinous rice gel and sweetened glutinous rice cake utilizing pulsed electric field during refrigerated storage. Foods, 2022, 11: 1306.
[8] 陈双琴, 顾雪, 黄菊媛, 李丹丹, 李娟, 马杨永杰, 普世皇, 李继章, 杨国明, 文建成. 糯稻种质胚乳淀粉组分含量及其消化特性. 食品科学, 2023, 44(20): 309-314.
Chen S Q, Gu X, Huang J Y, Li D D, Li J, Ma Y Y J, Pu S H, Li J Z, Yang G M, Wen J C. Composition and digestion characteristics of starch in endosperm of glutinous rice varieties. Food Sci, 2023, 44(20): 309-314 (in Chinese with English abstract).
[9] 曾生元, 杜灿灿, 胡庆峰, 李闯, 景德道, 林添资, 余波, 钱华飞, 孙立亭, 周义文, 费云燕, 韩华新, 杨军, 巫章平, 龚红兵. 镇糯系列糯稻品种的主要品质特性. 江苏农业科学, 2022, 50(18): 215-220.
Zeng S Y, Du C C, Hu Q F, Li C, Jing D D, Lin T Z, Yu B, Qian H F, Sun L T, Zhou Y W, Fei Y Y, Han H X, Yang J, Wu Z P, Gong H B. Main quality characteristics of glutinous rice cultivars in Zhennuo series. Jiangsu Agric Sci, 2022, 50(18): 215-220 (in Chinese with English abstract).
[10] 常堃, 李文品, 李慧, 陈祥, 陈丽潇, 李靓靓, 李评, 肖能武, 昝荣政, 杨荣彬. 不同糯稻品种酿造房县黄酒的差异性分析. 中国稻米, 2023, 29(4): 95-97.
doi: 10.3969/j.issn.1006-8082.2023.04.017
Chang K, Li W P, Li H, Chen X, Chen L X, Li L L, Li P, Xiao N W, Zan R Z, Yang R B. Analysis of the differences of different glutinous rice varieties brewing Fangxian rice wine. China Rice, 2023, 29(4): 95-97 (in Chinese with English abstract).
[11] 丹野久. 日本寒地北海道稻作极限地带糯米蛋白质含量和白度的年度间地区间差异及其产生因素. 粮油食品科技, 2022, 30(5): 26-43.
Dan Y J. Variation of the protein content and whiteness of glutinous rice grains among years and among areas, and its occurrence factors in the coldest regions for rice cultivation in Hokkaido, Japan. Sci Technol Cereals Oils Foods, 2022, 30(5): 26-43 (in Chinese with English abstract).
[12] 蔡乔宇, 周坚, 缪礼鸿, 陈轩. 黄酒专用米的研究进展. 中国酿造, 2018, 37(6): 1-5.
doi: 10.11882/j.issn.0254-5071.2018.06.001
Cai Q Y, Zhou J, Miao L H, Chen X. Research progress on special rice for rice wine. China Brew, 2018, 37(6): 1-5 (in Chinese with English abstract).
[13] 王保君, 程旺大, 沈亚强, 陈召桂, 彭玉慧, 朱佳伟, 黄家频, 张红梅. 浙江省粽子专用糯稻品种筛选及其综合评价. 浙江农业学报, 2022, 34: 2583-2593.
doi: 10.3969/j.issn.1004-1524.2022.12.01
Wang B J, Cheng W D, Shen Y Q, Chen Z G, Peng Y H, Zhu J W, Huang J P, Zhang H M. Selection and comprehensive evaluation of special glutinous rice varieties for dumpling in Zhejiang province, China. Acta Agric Zhejiangensis, 2022, 34: 2583-2593 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2022.12.01
[14] 梁雪雨, 郭敏, 欧旭华, 陈莹, 周丹华, 黄翠红, 王慧, 杨瑰丽. 南方稻区主栽香稻品种香味基因Badh2基因型分析. 广东农业科学, 2023, 50(12): 104-111.
Liang X Y, Guo M, Ou X H, Chen Y, Zhou D H, Huang C H, Wang H, Yang G L. Genotypic analysis of aroma gene Badh2 in aromatic rice cultivars in south China. Guangdong Agric Sci, 2023, 50(12): 104-111 (in Chinese with English abstract).
[15] 刘之熙, 闵军, 刘三雄, 刘利成, 胡敏, 李咏谊. 水稻香味基因Badh2的功能和效应分析. 湖南农业科学, 2023, (10): 1-6.
Liu Z X, Min J, Liu S X, Liu L C, Hu M, Li Y Y. Function and effect analysis of Badh2 aroma gene in rice. Hunan Agric Sci, 2023, (10): 1-6 (in Chinese with English abstract).
[16] Mumm R, Hageman J A, Calingacion M N, de Vos R C H, Jonker H H, Erban A, Kopka J, Hansen T H, Laursen K H, Schjoerring J K, Ward J L, Beale M H, Jongee S, Rauf A, Habibi F, Indrasari S D, Sakhan S, Ramli A, Romero M, Reinke R F, Ohtsubo K, Boualaphanh C, Fitzgerald M A, Hall R D. Multi-platform metabolomics analyses of a broad collection of fragrant and non-fragrant rice varieties reveals the high complexity of grain quality characteristics. Metabolomics, 2016, 12: 38.
doi: 10.1007/s11306-015-0925-1 pmid: 26848289
[17] 庄坤, 谢健, 陈正行. 糯米和糯米制品发展现状及趋势. 粮食与饲料工业, 2016, (12): 1-3.
Zhuang K, Xie J, Chen Z X. Present situation and development trend of glutinous rice and its products. Cereal Feed Ind, 2016, (12): 1-3 (in Chinese with English abstract).
[18] 江谷驰弘. 引进糯稻种质资源的评价与利用. 四川农业大学硕士学位论文, 四川雅安, 2016.
Jiang G C H. Evaluation and Utilization of Introduced Glutinous Rice Germplasm Resources. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2016 (in Chinese with English abstract).
[19] 中华人民共和国国家标准(GB/T17891-2017)《优质稻谷》. 北京: 中国标准出版社, 2017.
中华人民共和国国家标准(GB/T17891-2017)《优质稻谷》. Beijing: Standards Press of China, 2017 (in Chinese).
[20] Batey I L. Starch analysis using thermostable alpha-amylases. Starch Stärke, 1982, 34: 125-128.
[21] Englyst H N, Cummings J H. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. J Assoc Off Anal Chem, 1988, 71: 808-814.
[22] McCleary B V, Gibson T S, Mugford D C, Lukow O, Jackson D S, Rabe E, Patel N, Williams P C, Gelroth J, Camire M E, Chibbar R N, Ingelin M, Niemann C, Grant L A, Peterson D M, Corke H, Sanders P, Muir J, Choct M, Schmidt J, Walker R, Blakeney A B, Logue S, Tarr A, Gibson T, Batey I, Dynes J, Miklaszewicz T, Panozzo J, McCleary B, Li B W, Hofer P, Arndt E, Thomas M, Depalo R. Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: collaborative study. J AOAC Int, 1997, 80: 571-579.
[23] 中华人民共和国国家标准(GB5009.5-2016)《食品中蛋白质的测定》. 北京: 中国标准出版社, 2016.
National Standard of the People’s Republic of China (GB5009.5-2016) “Determination of Protein in Food”. Beijing: Standards Press of China, 2016 (in Chinese).
[24] 李奥. 分子标记辅助选择改良南粳5718的稻瘟病抗性及香味. 扬州大学硕士学位论文, 江苏扬州, 2023.
Li A. Improvement of Rice Blast Resistance and Flavor of Nanjing 5718 by Molecular Marker-Assisted Selection. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[25] Shi W W, Yang Y, Chen S H, Xu M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
[26] 丁颖. 中国水稻栽培学. 北京: 中国农业出版社, 1961.
Ding Y. Rice Cultivation in China. Beijing: China Agriculture Press, 1961 (in Chinese).
[27] 卞金龙. 淮北地区优质高效粳稻品种筛选及其评价指标体系. 扬州大学博士学位论文, 江苏扬州, 2020.
Bian J L. Screening and Evaluation Index System of japonica Rice Varieties with High Quality and High Efficiency in Huaibei Area. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2020 (in Chinese with English abstract).
[28] Xue W, Lindner S, Dubbert M, Otieno D, Ko J, Muraoka H, Werner C, Tenhunen J. Supplement understanding of the relative importance of biophysical factors in determination of photosynthetic capacity and photosynthetic productivity in rice ecosystems. Agric Forest Meteorol, 2017, 232: 550-565.
[29] 张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. 中国农业科学, 2010, 43: 2645-2660.
doi: 10.3864/j.issn.0578-1752.2010.13.004
Zhang H C, Wu G C, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Huang X F, Gong J L. The SOI model of quantitative cultivation of super-high yielding rice. Sci Agric Sin, 2010, 43: 2645-2660 (in Chinese with English abstract).
[30] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43: 266-276.
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010, 43: 266-276 (in Chinese with English abstract).
[31] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147-2158.
doi: 10.3864/j.issn.0578-1752.2012.11.003
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147-2158 (in Chinese with English abstract).
[32] 许轲, 杨海生, 张洪程, 龚金龙, 沈新平, 陶小军, 戴其根, 霍中洋, 魏海燕, 高辉. 江淮下游地区水稻品种生产力纬向差异及其合理利用. 作物学报, 2014, 40: 871-890.
doi: 10.3724/SP.J.1006.2014.00871
Xu K, Yang H S, Zhang H C, Gong J L, Shen X P, Tao X J, Dai Q G, Huo Z Y, Wei H Y, Gao H. Latitudinal difference of rice varieties productivity in the lower Yangtze and Huai valleys and its rational utilization. Acta Agron Sin, 2014, 40: 871-890 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00871
[33] 陈伟, 宋锦花, 夏中华, 金彦刚, 刘海浪, 卫万娟, 赵其兵, 任仰涛, 杨永乐, 常东伟, 李珍富, 张凡, 郑雅月, 谢梦苹. 江苏省粳稻品种产量构成因素及抗病性与产量的相关分析. 中国农学通报, 2023, 39(24): 13-17.
doi: 10.11924/j.issn.1000-6850.casb2022-0631
Chen W, Song J H, Xia Z H, Jin Y G, Liu H L, Wei W J, Zhao Q B, Ren Y T, Yang Y L, Chang D W, Li Z F, Zhang F, Zheng Y Y, Xie M P. Japonica rice varieties in Jiangsu province: yield components analysis and correlation analysis between disease resistance and yield. Chin Agric Sci Bull, 2023, 39(24): 13-17 (in Chinese with English abstract).
[34] 吴小奋, 周传猛, 黄晓琴, 梁琳, 陈海凤, 肖荣华. 基于DUS测试性状的广西地区常规水稻分析评价. 农业与技术, 2023, 43(11): 18-22.
Wu X F, Zhou C M, Huang X Q, Liang L, Chen H F, Xiao R H. Analysis and evaluation of conventional rice in Guangxi region based on DUS test traits. Agric Technol, 2023, 43(11): 18-22 (in Chinese).
[35] 高虹, 李跃东, 马秀芳, 吕桂兰, 李睿, 董立强, 潘争艳, 张雪, 李小婉, 邱福林, 隋国民. 辽宁省主栽水稻品种高产群体形成规律研究. 中国稻米, 2021, 27(6): 16-19.
doi: 10.3969/j.issn.1006-8082.2021.06.004
Gao H, Li Y D, Ma X F, Lyu G L, Li R, Dong L Q, Pan Z Y, Zhang X, Li X W, Qiu F L, Sui G M. Study on formation rule of high yield population of main rice varieties in Liaoning province. China Rice, 2021, 27(6): 16-19 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.06.004
[36] 扶定, 霍二伟, 李霞, 鲁伟林, 全瑞兰, 沈光辉, 郭桂英, 王青林, 王轲. 三系杂交糯稻嘉糯Ⅰ优721高产途径研究. 农业科技通讯, 2020, (6): 90-93.
Fu D, Huo E W, Li X, Lu W L, Quan R L, Shen G H, Guo G Y, Wang Q L, Wang K. Study on high-yield pathway of three-line hybrid glutinous rice Jianuo I You 721. Bull Agric Sci Technol, 2020, (6): 90-93 (in Chinese).
[37] 郝留根, 张宏伟, 甘雨, 郭慧, 李树杏, 潘建慧, 龚大琨. 杂交糯稻新品种黔糯优11主要农艺性状与产量的相关性. 农技服务, 2018, 35(6): 24-26.
Hao L G, Zhang H W, Gan Y, Guo H, Li S X, Pan J H, Gong D K. Correlation between main agronomic traits and yield of new hybrid glutinous rice variety Qiannuoyou 11. Agric Technol Serv, 2018, 35(6): 24-26 (in Chinese).
[38] 纪思萌, 陈真勇. 糯稻品种产量相关性状比较研究. 农业与技术, 2018, 38(11): 11-13.
Ji S M, Chen Z Y. Comparative study on yield-related traits of glutinous rice varieties. Agric Technol, 2018, 38(11): 11-13 (in Chinese).
[39] 贾倩, 吴晓, 钱可峰, 蔡义忠, 叶荣建. 我国6个籼稻主产省93份水稻样品品质性状分析. 中国稻米, 2023, 29(1): 65-71.
doi: 10.3969/j.issn.1006-8082.2023.01.010
Jia Q, Wu X, Qian K F, Cai Y Z, Ye R J. Analysis on quality traits of 93 samples in indica rice from six major producing provinces in China. China Rice, 2023, 29(1): 65-71 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2023.01.010
[40] 徐大勇, 金军, 杜永, 潘启民, 朱庆森. 江苏省主要高产粳稻品种品质性状分析. 江苏农业学报, 2002, 18(4): 203-207.
Xu D Y, Jin J, Du Y, Pan Q M, Zhu Q S. Analysis of quality properties of high yielding japonica rice cultivars in Jiangsu province. Jiangsu J Agric Sci, 2002, 18(4): 203-207 (in Chinese with English abstract).
[41] 衣政伟, 林赵淼, 刘正辉, 李刚华, 王绍华, 王强盛, 丁艳锋. 粳稻碾米品质的基因型差异及其与稻米理化特性的关系. 中国稻米, 2013, 19(4): 66-69.
doi: 10.3969/j.issn.1006-8082.2013.04.017
Yi Z W, Lin Z M, Liu Z H, Li G H, Wang S H, Wang Q S, Ding Y F. Genotypic differences in milled quality of japonica rice and its relationship with physicochemical characteristics of rice. China Rice, 2013, 19(4): 66-69 (in Chinese with English abstract).
[42] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016, 196: 702-711.
doi: 10.1016/j.foodchem.2015.09.112 pmid: 26593544
[43] Li H Y, Wen Y Y, Wang J, Sun B G. The molecular structures of leached starch during rice cooking are controlled by thermodynamic effects, rather than kinetic effects. Food Hydrocoll, 2017, 73: 295-299.
[44] 卢毅, 路兴花, 张青峰, 余建国, 肖雄雄, 庞林江, 成纪予. 稻米直链淀粉与米饭物性及食味品质的关联特征研究. 食品科技, 2018, 43(10): 219-223.
Lu Y, Lu X H, Zhang Q F, Yu J G, Xiao X X, Pang L J, Cheng J Y. Correlation of rice amylose with physical properties and taste quality of rice. Food Sci Technol, 2018, 43(10): 219-223 (in Chinese with English abstract).
[45] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002, 36: 285-294.
[46] Nawaz M A, Shu F K, Bhandari B. Effect of alkali treatment on the milled grain surface protein and physicochemical properties of two contrasting rice varieties. J Cereal Sci, 2016, 72: 16-23.
[47] 孙健, 梅淑芳, 赵华, 舒小丽, 吴殿星. 糯稻加工利用与遗传育种研究进展. 中国稻米, 2013, 19(1): 36-40.
doi: 10.3969/j.issn.1006-8082.2013.01.009
Sun J, Mei S F, Zhao H, Shu X L, Wu D X. Research progress on processing, utilization and genetic breeding of glutinous rice. China Rice, 2013, 19(1): 36-40 (in Chinese with English abstract).
[48] 黄忠民, 陈瑾, 宋会玲, 黄婉婧, 杨起恒, 潘治利, 李真, 艾志录. 糯米粉特性与速冻汤圆品质相关性分析. 食品工业科技, 2019, 40(4): 93-99.
Huang Z M, Chen J, Song H L, Huang W J, Yang Q H, Pan Z L, Li Z, Ai Z L. Correlation between the characteristics of glutinous rice flour and quality of quick-frozen glutinous soup ball. Sci Technol Food Ind, 2019, 40(4): 93-99 (in Chinese with English abstract).
[49] 马鹏阔, 周显青, 张玉荣, 李建飞. 糯米粉理化特性及与麻球品质的相关性. 粮油食品科技, 2018, 26(3): 1-6.
Ma P K, Zhou X Q, Zhang Y R, Li J F. Physicochemical properties of glutinous rice flour and its correlation with the quality of fried glutinous rice ball. Sci Technol Cereals Oils Foods, 2018, 26(3): 1-6 (in Chinese with English abstract).
[50] 林添资, 孙立亭, 景德道, 余波, 杨军, 钱华飞, 曾生元, 李闯, 杜灿灿, 胡庆峰, 周义文, 巫章平, 龚红兵. 镇糯晚粳系列品种的特征特性与育种启示. 中国种业, 2022, (12): 44-47.
Lin T Z, Sun L T, Jing D D, Yu B, Yang J, Qian H F, Zeng S Y, Li C, Du C C, Hu Q F, Zhou Y W, Wu Z P, Gong H B. Characteristics and breeding enlightenment of Zhennuo late japonica varieties. China Seed Ind, 2022, (12): 44-47 (in Chinese).
[51] Li W B, Zeng X H, Li S L, Chen F B, Gao J. Development and application of two novel functional molecular markers of BADH2 in rice. Electron J Biotechnol, 2020, 46: 1-7.
[52] Singh G, Gopala Krishnan S, Kumar A, Vinod K K, Bollinedi H, Ellur R K, Nagarajan M, Bhowmick P K, Madhav S M, Singh K, Singh A K. Molecular profiling of BADH2 locus reveals distinct functional allelic polymorphism associated with fragrance variation in Indian aromatic rice germplasm. Physiol Mol Biol Plants, 2022, 28: 1013-1027.
[53] 吴云鹏, 李祖军, 唐会会, 宫彦龙, 江学海, 姜雪, 张习春, 龙武华, 朱速松. 黔北地区优质水稻品种筛选试验. 现代农业科技, 2023, (19): 19-22.
Wu Y P, Li Z J, Tang H H, Gong Y L, Jiang X H, Jiang X, Zhang X C, Long W H, Zhu S S. Screening test of high-quality rice varieties in northern Guizhou. Mod Agric Sci Technol, 2023, (19): 19-22 (in Chinese with English abstract).
[54] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54: 1397-1409.
doi: 10.3864/j.issn.0578-1752.2021.07.007
Liu Q Y, Zhou L, Tian J Y, Cheng S, Tao Y, Xing Z P, Liu G D, Wei H Y, Zhang H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. Sci Agric Sin, 2021, 54: 1397-1409 (in Chinese with English abstract).
[1] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[6] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[7] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[8] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[9] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[10] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[11] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[12] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[13] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[14] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
[15] ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!