Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1538-1547.doi: 10.3724/SP.J.1006.2025.41063

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37

LYU Guo-Feng*,FAN Jin-Ping,WU Su-Lan,ZHANG Xiao,ZHAO Ren-Hui,LI Man,WANG Ling,GAO De-Rong,BIE Tong-De,LIU Jian   

  1. Lixiahe Institute of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Lower & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
  • Received:2024-09-30 Revised:2025-03-26 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-07
  • Supported by:
    This study was supported by the National Key R&D Program of China (2024YFD1201100) and the Jiangsu Province Seed Industry Revitalization Project of China (JBGS (2021) 049).

Abstract:

Hybridization between winter and spring wheat varieties is an important approach to broaden the genetic base of wheat cultivars. Yangmai 37, an early-maturing spring wheat cultivar, was developed from a cross between the spring wheat Zhenmai 9 and the semi-winter wheat Han 6172. To investigate the genetic composition of Yangmai 37 and the selection of functional genes during its breeding process, we compared key breeding traits—including growth period, yield components, disease resistance, and quality-related traits—as well as the haplotypes of 64 functional genes associated with these traits between Yangmai 37 and its two parents. The results showed that Yangmai 37 matured four days earlier than Zhenmai 9. Its plant height was similar to Zhenmai 9, while its spike density (spikes m-2) and thousand-grain weight (TGW) were intermediate between its parents. However, its grain number per spike (grains/spike) was higher than both parents. In terms of disease resistance, Yangmai 37 exhibited moderate resistance to Fusarium head blight (FHB), similar to Zhenmai 9, but was susceptible to powdery mildew (PM) and wheat yellow mosaic virus (WYMV), like Han 6172. The protein content of Yangmai 37 was comparable to Zhenmai 9, but its dough stability time was significantly lower. Genetic contribution analysis revealed that 62.5% of Yangmai 37’s genetic makeup originated from Zhenmai 9, while 37.5% came from Han 6172. Yangmai 37 inherited the same haplotypes for vernalization, photoperiod, and flowering genes as its female parent. It also carried the dwarf gene Rht-B1b from Zhenmai 9 and inherited high grain weight haplotypes at TaGS-D1 and TaSus2-2B from its female parent, as well as TaSus1-7A from its male parent. Additionally, Yangmai 37 retained the QTL QFhs.crc.2D, associated with FHB resistance, from Zhenmai 9 but lost the Pm21 gene for PM resistance and QYm.nau-2D, a QTL for WYMV resistance, from its female parent. For pre-harvest sprouting (PHS) resistance, Yangmai 37 harbored the same Sdr-B1a and Vp-1Bc haplotypes as Zhenmai 9. However, Yangmai 37 lacked the high-molecular-weight glutenin subunit (HMW-GS) combination 1Dx5+1Dy10, which is associated with superior gluten strength in Zhenmai 9. Instead, it inherited the 1RS.1BL translocation, known to negatively impact gluten quality, from its male parent. The selection of flowering-related genes and PHS resistance haplotypes contributed to the unequal distribution of parental alleles in Yangmai 37. Meanwhile, the loss of Pm21, QYm.nau-2D, and 1Dx5+1Dy10, along with the introduction of the 1RS.1BL translocation, were key factors influencing the differences in disease resistance and quality traits between Yangmai 37 and its female parent, Zhenmai 9.

Key words: wheat variety, winter and spring wheat hybridization, breeding trait, functional gene, gene, ic composition

[1] 刘志勇, 王道文张爱民梁翰文吕慧颖邓向东葛毅强魏珣杨维才. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 430–434.

Liu Z Y, Wang D W, Zhang A MLiang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status and perspective of wheat genomics, genetics, and breeding. J Plant Genet Resour, 2018, 19: 430–434 (in Chinese with English abstract).

[2] 刘易科, 朱展望陈泠邹娟佟汉文朱光何伟杰张宇庆高春保基于SNP标记揭示我国小麦品种()的遗传多样性. 作物学报, 2020, 46: 307–314.

Liu Y K, Zhu Z W, Chen L, Zou J, Tong H W, Zhu G, He W J, Zhang Y Q, Gao C B. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers. Acta Agron Sin, 2020, 46: 307314(in Chinese with English abstract).

[3] 喻俊杰, 金艳, 张勇, 徐辰武江苏主栽小麦品种遗传多样性的SSR分析. 麦类作物学报, 2015, 35: 1372–1377.

Yu J J, Jin Y, Zhang Y, Xu C W. Analysis on genetic diversity of Jiangsu wheat cultivars using SSR markers. J Triticeae Crops, 2015, 35: 13721377 (in Chinese with English abstract).

[4] 任勇, 李生荣, 罗建明, 何中虎, 杜小英, 周强, 何员江, 魏育明, 郑有良. 绵麦37特异位点在其衍生品种中的遗传贡献率分析. 遗传, 2014, 36: 145151.

Ren Y, Li S R, Luo J M, He Z H, Du X Y, Zhou Q, He Y J, Wei Y M, Zheng Y L. Frequency and contribution of specific genetic loci transferred from wheat cultivar Mianmai 37 to its derivatives. Hereditas, 2014, 36: 145151(in Chinese with English abstract).

[5] 李俊, 万洪深, 杨武云, 王琴, 朱欣果, 胡晓蓉, 魏会廷, 汤永禄, 李朝苏, 彭正松, . 小麦新品种川麦104的遗传构成分析. 中国农业科学, 2014, 47: 22812291.

Li J, Wan H S, Yang W Y, Wang Q, Zhu X G, Hu X R, Wei H T, Tang Y L, Li C S, Peng Z S, et al. Dissection of genetic components in the new high-yielding wheat cultivar Chuanmai 104. Sci Agric Sin2014, 47: 22812291 (in Chinese with English abstract).

[6] 邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48: 39413951.

Zou S K, Yin G H, Tang J W, Han Y L, Li N N, Li S C, Huang F, Wang L N, Zhang Q, Gao Y. Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Sci Agric Sin2015, 48: 39413951 (in Chinese with English abstract).

[7] 杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅. 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018, 51: 32373248.

Yang Z B, Wang A B, Leng S F, Gu Z Z, Zhou Y M. Genetic analysis of the novel high-yielding wheat cultivar Huaimai33. Sci Agric Sin2018, 51: 32373248 (in Chinese with English abstract).

[8] 罗江陶, 郑建敏, 邓清燕, 刘培勋, 蒲宗君. 重要育种亲本川麦44对衍生品种的遗传贡献. 中国农业科学, 2021, 54: 42554270.

Luo J T, Zheng J M, Deng Q Y, Liu P X, Pu Z J. The genetic contribution of the important breeding parent Chuanmai 44 to its derivatives. Sci Agric Sin, 2021, 54: 42554270 (in Chinese with English abstract).

[9] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843–1860.

[10] 权威, 马锦绣, 华正蓉, 左静红, 王伟伟, 王俊稳, 张立平, 庞斌双, 赵昌平. 我国部分审定小麦品种的品质性状及基因型分析. 植物遗传资源学报, 2023, 24: 701718.

Quan W, Ma J X, Hua Z R, Zuo J H, Wang W W, Wang J W, Zhang L P, Pang B S, Zhao C P. Quality analysis in a collection of wheat varieties approved in China. J Plant Genet Resour, 2023, 24: 701718 (in Chinese with English abstract).

[11] 王君婵, 吴旭江, 胡文静, 张晓, 张勇, 高德荣, 别同德, 张伯桥. 扬麦系列品种()重要性状功能基因的KASP检测. 江苏农业学报, 2019, 35: 12711283.

Wang J C, Wu X J, Hu W J, Zhang X, Zhang Y, Gao D R, Bie T D, Zhang B Q. Kompetitive allele specific PCR(KASP) assays for functional genes of important trait in Yangmai series wheat cultivars (lines). Jiangsu J Agric Sci, 2019, 35: 12711283 (in Chinese with English abstract).

[12] 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析. 中国农业科学, 2022, 55: 233247.

Jiang P, Zhang P, Yao J B, Wu L, He Y, Li C, Ma H X, Zhang X. Phenotypic characteristics and related gene analysis of Ningmai series wheat varieties. Sci Agric Sin2022, 55: 233247 (in Chinese with English abstract).

[13] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣长江下游麦区新育成品种() 3种主要病害的抗性鉴定及抗病基因/QTL的分子检测. 作物学报, 2021, 47: 2335–2347.

Lyu G F, Bie T D, Wang H, Zhao R H, Fan J P, Zhang B Q, Wu S L, Wang L, Wang Z J, Gao D R. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River. Acta Agron Sin, 2021, 47: 2335–2347 (in Chinese with English abstract).

[14] 张晓江伟高德荣郭延玲刘大同蒋正宁李曼刘健袁博陆成彬. 94份小麦种质PuroindolineHMW-GS分子检测与品质分析. 植物遗传资源学报, 2024, 25: 509521.

Zhang X, Jiang W, Gao D R, Guo Y L, Liu D T, Jiang Z N, Li M, Liu J, Yuan B, Lu C B. Molecular detection of Puroindoline and HMW-GS and quality traits analysis in 94 wheat germplasms. J Plant Genet Resour, 2024, 25: 509521 (in Chinese with English abstract).

[15] 朱冬梅, 王慧, 刘大同, 高德荣, 吕国锋, 王君婵, 高致富, 陆成彬. 小麦籽粒灌浆与脱水特性. 中国农业科学, 2019, 52: 42514261.

Zhu D M, Wang H, Liu D T, Gao D R, Lyu G F, Wang J C, Gao Z F, Lu C B. Characteristics of grain filling and dehydration in wheat. Sci Agric Sin2019, 52: 42514261 (in Chinese with English abstract).

[16] 张晓, 李曼, 刘大同, 江伟, 张勇, 高德荣. 扬麦系列品种品质性状分析及育种启示. 中国农业科学, 2020, 53: 13091321.

Zhang X, Li M, Liu D T, Jiang W, Zhang Y, Gao D R. Analysis of quality traits and breeding inspiration in Yangmai series wheat varieties. Sci Agric Sin2020, 53: 13091321 (in Chinese with English abstract).

[17] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555–564.

[18] Xiao J, Chen X L, Xu Z T, Guo J, Wu Z Z, Wang H Y, Zhu X B, Nie M J, Bie T D, Cheng S H, Zhu T T, Luo M C, You F M, Wang X E. Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica, 2016, 211: 91101.

[19] Zhu X B, Wang H Y, Guo J, Wu Z Z, Cao A Z, Bie T D, Nie M J, You F M, Cheng Z B, Xiao J, Liu Y Y, Cheng S H, Chen P D, Wang X E. Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet2012, 124: 177–188.

[20] 李玉刚任民孙绿王圣健韩梅李振清翟晓灵代小雁侯元江盖红梅利用SSRSNP标记分析鲁麦14对青农2号的遗传贡献. 作物学报, 2018, 44: 159–168.

Li Y G, Ren M, Sun L, Wang S J, Han M, Li Z Q, Zhai X L, Dai X Y, Hou Y J, Ge H M. Genetic contribution of Lumai 14 to Qingnong 2 revealed by SSR and SNP markers. Acta Agron Sin, 2018, 44: 159–168 (in Chinese with English abstract).

[21] 别同德高德荣张晓庄丽芳, 赵仁慧, 陈甜甜, 张伯桥基于高代姊妹系组群研究小麦-簇毛麦染色体T6VS.6AL易位的遗传效应江苏农业学报, 2015, 31: 1206–1210.

Bie T D, Gao D R, Zhang X, Zhuang L F, Zhao R H, Chen T T, Zhang B Q. Genetic effects of wheat-Haynaldia Villosa chromosome T6VS.6AL translocation based on advanced sib-line groups. Jiangsu J Agric Sci, 2015, 31: 1206–1210 (in Chinese with English abstract).

[22] 许琦, 杨娜, 柴永峰, 杨淑巧, 赵智勇, 裴蕾, 郭文治, 刘跃鹏. 中国小麦主要矮秆基因的分布及其对株高的影响. 西北农业学报, 2014, 23: 5964.

Xu Q, Yang N, Chai Y F, Yang S Q, Zhao Z Y, Pei L, Guo W Z, Liu Y P. Distribution and impact on plant height of major wheat dwarfing genes in China. Acta Agric Boreali-Occident Sin, 2014, 23: 5964 (in Chinese with English abstract).

[23] 杨松杰, 张晓科, 何中虎, 夏先春, 周阳. STS标记检测矮秆基因Rht-B1bRht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 16801688.

Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin2006, 39: 16801688 (in Chinese with English abstract).

[24] Srinivasachary S, Gosman N, Steed A, Hollins T W, Bayles R, Jennings P, Nicholson P. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet2009, 118: 695–702.

[25] 徐晴, 许甫超, 秦丹丹, 彭严春, 朱展望, 董静. 矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响. 麦类作物学报, 2022, 42: 790798.

Xu Q, Xu F C, Qin D D, Peng Y C, Zhu Z W, Dong J. Distribution of the wheat dwarfing genes in China and their effects on Fusarium head blight resistance. J Triticeae Crops, 2022, 42: 790798 (in Chinese with English abstract).

[26] Pang Y L, Liu C X, Wang D F, St Amand P, Bernardo A, Li W H, He F, Li L Z, Wang L M, Yuan X Fet al. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol Plant, 2020, 13: 13111327.

[27] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531535.

Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract).

[28] 刘成, 韩冉, 汪晓璐, 宫文萍, 程敦公, 曹新有, 刘爱峰, 李豪圣, 刘建军. 小麦远缘杂交现状、抗病基因转移及利用研究进展. 中国农业科学, 2020, 53: 12871308.

Liu C, Han R, Wang X L, Gong W P, Cheng D G, Cao X Y, Liu A F, Li H S, Liu J J. Research progress of wheat wild hybridization, disease resistance genes transfer and utilization. Sci Agric Sin2020, 53: 12871308 (in Chinese with English abstract).

[29] Villareal R L, Bañuelos O, Mujeeb-Kazi A, Rajaram S. Agronomic performance of chromosomes 1B and T1BL.1RS near isolines in the spring bread wheat Seri M82. Euphytica, 1998, 103: 195–202.

[30] Zhao C H, Cui F, Wang X Q, Shan S C, Li X F, Bao Y G, Wang H G. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crops Res, 2012, 127: 79–84.

[31] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet, 2015, 128: 353–363.

[32] Moreno-Sevilla B, Baenziger P S, Peterson C J, Graybosch R A, McVey D V. The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci, 1995, 35: 1051–1055.

[33] Ehdaie B, Layne A P, Waines J G. Root system plasticity to drought influences grain yield in bread wheat. Euphytica2012, 186: 219–232.

[34] 张平平, 马鸿翔, 姚金保, 周淼平, 杨学明, 张鹏, 杨丹. 江苏省小麦品种的谷蛋白亚基组成分析. 江苏农业学报, 2014, 30: 959965.

Zhang P P, Ma H X, Yao J B, Zhou M P, Yang X M, Zhang P, Yang D. Subunit composition of glutenin in common wheat of Jiangsu province. Jiangsu J Agric Sci, 2014, 30: 959965 (in Chinese with English abstract).

[35] 刘建军, 何中虎, Pena R J, 赵振东. 1BL/1RS易位对小麦加工品质的影响. 作物学报, 2004, 30: 149153.

Liu J J, He Z H, Pena R J, Zhao Z D. Effect of 1BL/1RS translocation on grain quality and noodle quality in bread wheat. Acta Agron Sin, 2004, 30: 149153 (in Chinese with English abstract).

[36] 刘丽, 阎俊, 张艳, 何中虎, Pena R J, 张立平. 冬播麦区Glu-1Glu-3位点变异及1B/1R易位与小麦加工品质性状的关系. 中国农业科学, 2005, 38: 19441950.

Liu L, Yan J, Zhang Y, He Z H, Pena R J, Zhang L P. Allelic variation at the Glu-1 and Glu-3 Loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin, 2005, 38: 19441950 (in Chinese with English abstract).

[37] Ma F Y, Li M, Yu L L, Li Y, Liu Y Y, Li T T, Liu W, Wang H W, Zheng Q, Li K X, et al. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties. Mol Breed, 2013, 32: 853–865.

[38] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣. 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015, 48: 37793793.

Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R. Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin2015, 48: 37793793 (in Chinese with English abstract).

[1] LI Shi-Peng, CHEN Cai-Wu, ZHANG Jing, LYU Tian, FU Ting-Dong, YI Bin. Identification of fertility levels and quantification of the temperature-fertility relationship in rapeseed pol TCMS lines using an improved U-Net++ model [J]. Acta Agronomica Sinica, 2025, 51(6): 1423-1434.
[2] YANG Si-Jie, DU Qi-Di, CHAI Shou-Xi, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, GUO Hui-Jun, LIU Lu-Xiang. Genetic mapping of mutant genes on flag leaf length and width in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1548-1557.
[3] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[4] MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276.
[5] LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408.
[6] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[7] WANG Ya-Wen, QI Zheng-Yang, YOU Jia-Qi, NIE Xin-Hui, CAO Juan, YANG Xi-Yan, TU Li-Li, ZHANG Xian-Long, WANG Mao-Jun. Preparation of cotton 60K functional locus gene chip and its application to genetic research [J]. Acta Agronomica Sinica, 2025, 51(5): 1178-1188.
[8] WANG Qing, WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na, CHENG Hong-Yan. Differences in transcriptomic responses to cadmium stress in high/low-Cd- accumulation wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1230-1247.
[9] SONG Song-Quan, TANG Cui-Fang, CHENG Hong-Yan, WANG Cheng-Liang, YUAN Liang-Bing, ZUO Sheng. Endosperm development of cereal crops and its role in seed dormancy and germination [J]. Acta Agronomica Sinica, 2025, 51(5): 1133-1155.
[10] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[11] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[12] FANG Ying-Hao, ZHOU Bo, CHEN Ru-Mei, YANG Wen-Zhu, QIN Hui-Min. Integrative analysis of RNA-seq and PER-seq to elucidate regulatory network of ZmHDZ6 expression [J]. Acta Agronomica Sinica, 2025, 51(4): 958-968.
[13] ZHOU En-Qiang, MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun, WEI Li-Bin. Analysis of bZIP gene family and identification of seed development candidate genes in pea based on seed development transcriptome [J]. Acta Agronomica Sinica, 2025, 51(4): 914-931.
[14] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[15] ZHANG Xiao-Li, LIU Xiao-Yan, XIA Wen-Wen, LI Jin. Functional analysis of the plasma membrane intrinsic protein gene SiPIP1;3 from Saussurea involucrata in tomato [J]. Acta Agronomica Sinica, 2025, 51(4): 863-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!