Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1569-1581.doi: 10.3724/SP.J.1006.2025.43056

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize

YUAN Xin1(), ZHAO Zhuo-Fan2, ZHAO Rui-Qing1, LIU Xiao-Wei1, ZHENG Ming-Min3, LIU Yu-Sheng4, DONG Hao-Sheng4, DENG Li-Juan4, CAO Mo-Ju1,*(), HUANG Qiang4,*()   

  1. 1Maize Research Institute, Sichuan Agricultural University / Key Laboratory of Biology and Genetic of Maize in Southwest Region, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
    2Chengdu University of Technology, Chengdu 610051, Sichuan, China
    3College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, Sichuan, China
    4Sichuan Institute of Atomic Energy / Irradiation Preservation and Effect Key Laboratory of Sichuan Province, Chengdu 610101, Sichuan, China
  • Received:2024-12-10 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-08
  • Contact: *E-mail: qianghuang2804@163.com;E-mail: caomj@sicau.edu.cn
  • Supported by:
    the Sichuan Science and Technology Program(2022NSFSC0018);the Sichuan Science and Technology Program(2021YFYZ0011);the Sichuan Science and Technology Program(2024NSFSC1210);the Sichuan Science and Technology Program(2023YFH0020)

Abstract:

The kernel serves as the primary storage organ in maize, and its proper development requires on an adequate carbohydrate supply and efficient nutrient transport channels. In this study, we identified a natural mutant, small kernel 18 (smk18), exhibiting defects in kernel development. After multi-year and multi-location field trials, the smk18 mutant trait remained genetically stable. Segregation analysis of the (B73 × smk18) F2 population revealed that the mutant phenotype was controlled by a single recessive gene. The smk18 mutant was backcrossed to the inbred line RP125 for five generations to construct the near-isogenic mn-like1 (RP125smk18 smk18). Phenotypic evaluation showed that mn-like1 exhibited increased plant height and ear height compared to RP125, whereas hundred-kernel weight, kernel length, and kernel width were significantly reduced. Through molecular mapping, we localized the causal gene between Indel 4 and Indel 5 on chromosome 2. Within this interval, the Miniature1 (Mn1) gene had been previously reported to encode a cell wall invertase (INCW2) essential for carbohydrate transport during early kernel development. Sequencing of the Mn1 coding sequence (CDS) in mn-like1 revealed a 9-bp deletion in exon 5, leading to the loss of three amino acids (positions 409-411) in the Mn1 protein and alterations in its structure. Expression analysis showed that Mn1 transcript levels were significantly reduced in mn-like1 kernels at 13 days after pollination (DAP). An allelism test between mn-like1 and the transposon insertion mutant mn1-mu confirmed that mn-like1 is a novel allelic variant of Mn1. Further subcellular localization studies, carbohydrate quantification, and glycogen staining indicated that Mn1 is specifically expressed in the basal transfer layer of the endosperm. Mutation of Mn1 disrupted carbohydrate transport, leading to a significant reduction in sucrose and starch content in mn-like1 kernels, ultimately resulting in kernel developmental defects. In conclusion, this study expands the repertoire of Mn1 mutants in diverse genetic backgrounds and provides valuable genetic resources for elucidating the regulatory mechanisms of Mn1 in kernel development and the catalytic function of Mn1 protein.

Key words: maize, gene mapping, nutrient transport, cell wall invertase, kernel development

Table 1

Primers related to gene mapping"

引物名称
Primer name
正向引物物理位置
Physical location of the forward sequences in Chr. 2
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
Indel 1 5,565,500 TTGCTGCCGTTTCTTAGGTC GGGAGTGCAAAAATATCCGA
bnlg125 14,147,507 GGGACAAAAGAAGAAGCAGAG GAAATGGGACAGAGACAGACAAT
Indel 2 28,305,440 CAAACATGCCCAAATGTCAA CGGTACAGGGGATACATTCCT
Indel 3 48,135,660 ACCTCCGTTTGCCCGAGT CCCCCGTTTTGTTCTCTCTC
Indel 4 48,740,600 CGGTTTGGAACGCAATTC AATCGCGTTTAGGAAGAGCA
Indel 5 60,131,793 GCACACGTTTCATATCTCCG CCAGGTTGAGGTTGATAAGC
Indel 6 64,261,020 TCCCCTCAGCTCAGTAGTCA CGTGGTGCTTTTGGGTAGAT
umc1635 86,060,326 GCTGAGCAGATCTTTCCTTGTTTC AAGGAGCAGAACTCGGAGACG

Table 2

Primers for gene cloning and identification of Mu mutants"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
用途
Usage
Mn1-CDSF1/R1 CTCTGTATGTGAGTGAGGCCA ATTCCTCAGGCGCCACTATG CDS扩增CDS amplification
Mn1-qpcrF1/R1 TCTTCAGGGTGTTCAAGCCC TCGATCAGGCTTCTCAGGGA qRT-PCR
ZmActin-F1/R1 TCACCCTGTGCTGCTGACCG GAACCGTGTGGCTCACACCA qRT-PCR
mu-F/R CCACCCGGACATCAACTACC AGAACGTCTTGGACGCGTAG Mu突变体鉴定
Identification of Mu mutants

Fig. 1

Comparison of agronomic traits between RP125 and mn-like1 A: mn-like1 and RP125 plants after pollen dispersal; B, C: RP125 and mn-like1 ear and ear nodes 16 days after pollination; D: internode number of mn-like1 and RP125; E: mn-like1 and RP125 seedling plants; F, G and H: mn-like1 and RP125 kernel length, kernel width and budding potential. Scale in Fig. A is 10 cm; Scale in Figs. B, C and E is 2 cm; Scale in Fig. D is 2.5 cm; Scale in Figs. F, G and H is 1 cm."

Table 3

Comparison of agronomic traits between RP125 and mn-like1"

农艺性状
Agronomic trait
mn-like1 RP125 相比RP125
Compare with RP125 (%)
株高 Plant height (cm) 183.54±14.65 167.40±14.47 +8.79**
穗位高 Ear height (cm) 81.48±8.12 75.40±8.12 +7.46**
节间数 Internode number 13.59±0.78 11.78±0.97 +15.36**
茎粗(第1节) Stem size (section 1) (mm) 18.70±3.18 15.99±3.00 +14.49**
百粒重 Hundred-grain weight (g) 5.62±0.78 27.39±0.03 -79.48**
粒长 Kernel length (mm) 6.35±0.64 9.45±0.42 -32.80**
粒宽 Kernel width (mm) 5.80±0.42 8.42±0.05 -31.11**

Fig. 2

Comparison of kernel development between RP125 and mn-like1 A: observation on dynamic kernel development of RP125; B: dynamic development observation of mn-like1 seed development. Scale in Figs. A and B is 2 mm. DAP: days after pollination."

Table 4

Genetic analysis of (B73 × smk18) F2 population"

群体
Population
果穗
Ear
总粒数
Total number of kernel
正常籽粒
Normal kernel
突变籽粒
Mutant kernel
实际比例
Actual ratio
理论比例
Theoretical ratio
χ2
chi-square test
(B73×smk18) F2 1 635 475 160 2.97 3∶1 0.004
2 545 415 130 3.19 3∶1 0.006
3 542 404 138 2.93 3∶1 0.009

Fig. 3

Physical map of gene mapping Initial mapping of candidate genes. n: population size; Recombinants: number of individual plants of recombination."

Fig. 4

Analysis of ZmMn1 CDS sequence variation, expression, protein structure, and function A: comparison of ZmMn1 CDS between RP125 and mn-like1; B: comparison of ZmMn1 expression in RP125 and mn-like1; C: phylogenetic tree of Mn1 protein in different species; D: three-dimensional structure of Mn1 protein(On the left is the three-dimensional structure of Mn1 protein in RP125, and on the right is the three-dimensional structure of Mn1 protein in mn-like1; the red box shows the three-dimensional structure difference area of Mn1 protein); E and F: analysis of conserved sites of Mn1 protein in different species. ** means signifant difference at the 0.01 probability level."

Fig. 5

Subcellular localization of ZmMn1 A: ZmMn1-eGFP fusion protein colocates with cell membrane marker (mCherry); B: ZmMn1-eGFP fusion protein colocates with cell wall marker (CFW). C: ZmMn-like1-eGFP fusion protein colocates with cell membrane marker (mCherry); D: ZmMn-like1-eGFP fusion protein colocates with cell wall marker (CFW)."

Fig. 6

Allelic test of mn-like1 and mn1-mu A: diagram of Mu transposon insertion into Zm00001d003776 gene; B: molecular identification of Mu transposon insertion mutants; C: kernel phenotypes of mn-like1, mn1-mu and (mn-like1×mn1-mu) F1 generation; D: ear phenotypes of mn-like1, mn1-mu and (mn-like1×mn1-mu) F1 generation. M: DL2000; Scale in Fig. C is 1 cm; Scale in Fig. D is 2.5 cm."

Fig. 7

Comparison of sucrose and starch contents between RP125 and mn-like1 A: comparison of sucrose content between RP125 and mn-like1. B: comparison of I-IK staining and starch content of RP125 and mn-like1 grains."

Fig. 8

Comparison of periodic acid-schiff (PAS) histological staining in longitudinal sections of RP125 and mn-like1 kernels at 13 days after pollination A: PAS staining of longitudinal sections in RP125 kernels. BETL: basal endosperm transfer layer. PED: pedicle. ENDO: endosperm. B: glycogen accumulation in endosperm of RP125. The red circle represents the amount of glycogen accumulated in a single starch endosperm cell. C: PAS staining of longitudinal sections in mn-like1 kernels. D: mn-like1 glycogen accumulation in endosperm. The red circle represents the amount of glycogen accumulated in a single cell."

[1] Dai D W, Ma Z Y, Song R T.Maize kernel development. Mol Breed, 2021, 41: 2.
[2] Doll N M, Depège-Fargeix N, Rogowsky P M, Widiez T. Signaling in early maize kernel development. Mol Plant, 2017, 10: 375-388.
doi: S1674-2052(17)30009-6 pmid: 28267956
[3] 刘京, 朱凯丽, 岳海旺, 李贺勤, 张海艳, 赵延明, 杨然兵, 尚书旗, 江绪文. 玉米果种皮对其种子萌发及生理特性的影响. 种子, 2021, 40(9): 40-47.
Liu J, Zhu K L, Yue H W, Li H Q, Zhang H Y, Zhao Y M, Yang R B, Shang S Q, Jiang X W. Effects of seed coat on seed germination and physiological characteristics of maize. Seed, 2021, 40(9): 40-47 (in Chinese with English abstract).
[4] Wallace J G. Maize seed endophytes. Mol Plant Pathol, 2023, 24: 801-810.
[5] 孙琴.ZmEXPB15调控玉米籽粒粒型的生物学功能及分子机理. 华中农业大学博士学位论文, 湖北武汉, 2022.
Sun Q.Biological Function and Molecular Mechanism of ZmEXPB15 Regulating Maize Grain Type. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[6] Dai D W, Ma Z Y, Song R T.Maize endosperm development. J Integr Plant Biol, 2021, 63: 613-627.
doi: 10.1111/jipb.13069
[7] 徐阿慧.玉米角质和粉质胚乳淀粉的发育和特性. 扬州大学硕士学位论文, 江苏扬州, 2020.
Xu A H. Development and Properties of Starches from Vitreous and Floury Endosperms of Maize Kernels. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020 (in Chinese with English abstract).
[8] Chatterjee D, Wittmeyer K, Lee T F, Cui J, Yennawar N H, Yennawar H P, Meyers B C, Chopra S. Maize unstable factor for orange1 is essential for endosperm development and carbohydrate accumulation. Plant Physiol, 2021, 186: 1932-1950.
doi: 10.1093/plphys/kiab183 pmid: 33905500
[9] Zheng Y K. Molecular mechanisms of maize endosperm transfer cell development. Plant Cell Rep, 2022, 41: 1171-1180.
[10] Wang Y Y, Shi D S, Zhu H, Yin H X, Wang G Y, Yang A Q, Song Z X, Jing Q Q, Shuai B L, Xu N K, et al. Revisiting maize Brittle endosperm-2 reveals new insights in BETL development and starchy endosperm filling. Plant Sci, 2023, 332: 111727.
[11] Neuffer M G, Sheridan W F.Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics, 1980, 95: 929-944.
doi: 10.1093/genetics/95.4.929 pmid: 17249053
[12] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位. 作物学报, 2021, 47: 285-293.
doi: 10.3724/SP.J.1006.2021.03015
Jiang C G, Shi H M, Wang H W, Li K, Huang C L, Liu Z F, Wu Y J, Li S Q, Hu X J, Ma Q. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize. Acta Agron Sin, 2021, 47: 285-293 (in Chinese with English abstract).
[13] Ding S, Liu X Y, Wang H C, Wang Y, Tang J J, Yang Y Z, Tan B C. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. J Plant Physiol, 2019, 240: 152992.
[14] Yuan N N, Wang J C, Zhou Y, An D, Xiao Q, Wang W Q, Wu Y R. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Sci, 2019, 287: 110203.
[15] Miclaus M, Wu Y R, Xu J H, Dooner H K, Messing J. The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics, 2011, 189: 1271-1280.
doi: 10.1534/genetics.111.133918 pmid: 21926304
[16] Long Y, Wang C, Liu C, Li H G, Pu A Q, Dong Z Y, Wei X, Wan X Y. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res, 2024, 62: 27-46.
[17] Li X J, Zhang Y F, Hou M M, Sun F, Shen Y, Xiu Z H, Wang X M, Chen Z L, Sun S S M, Small I, et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797-809.
[18] Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reprod, 2018, 31: 319-326.
doi: 10.1007/s00497-018-0344-3 pmid: 29978299
[19] Wang P, Clark N M, Nolan T M, Song G Y, Bartz P M, Liao C Y, Montes-Serey C, Katz E, Polko J K, Kieber J J, et al. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. Plant Cell, 2022, 34: 2594-2614.
[20] Boehlein S K, Shaw J R, Boehlein T J, Boehlein E C, Curtis Hannah L. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J, 2018, 96: 595-606.
[21] Wu J W, Wang X Y, Yan R Y, Zheng G M, Zhang L, Wang Y, Zhao Y J, Wang B H, Pu M L, Zhang X S, et al. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC Plant Biol, 2024, 24: 458.
doi: 10.1186/s12870-024-05163-9 pmid: 38797860
[22] Ma B, Zhang L, He Z H. Understanding the regulation of cereal grain filling: The way forward. J Integr Plant Biol, 2023, 65: 526-547.
doi: 10.1111/jipb.13456
[23] Chourey P S, Li Q B, Kumar D. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (Mn1) seed mutant in maize. Mol Plant, 2010, 3: 1026-1036.
doi: 10.1093/mp/ssq057 pmid: 20924026
[24] Hu M J, Zhao H M, Yang B, Yang S, Liu H H, Tian H, Shui G H, Chen Z L, Lizhu E, Lai J S, et al. ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels. New Phytol, 2021, 232: 2384-2399.
doi: 10.1111/nph.17754 pmid: 34559890
[25] Sun C H, Wang Y, Yang X R, Tang L, Wan C M, Liu J Q, Chen C P, Zhang H S, He C C, Liu C Q, et al. MATE transporter GFD1 cooperates with sugar transporters, mediates carbohydrate partitioning and controls grain-filling duration, grain size and number in rice. Plant Biotechnol J, 2023, 21: 621-634.
[26] Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992, 4: 297-305.
[27] Cheng W H, Taliercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 1996, 8: 971-983.
[28] Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J H, Xiao L T, Zhang H X. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11: 1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950
[29] Lowe J, Nelson O E. Miniature seed-a study in the development of a defective caryopsis in maize. Genetics, 1946, 31: 525-533.
doi: 10.1093/genetics/31.5.525 pmid: 17247216
[30] Vilhar B, Kladnik A, Blejec A, Chourey P S, Dermastia M. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol, 2002, 129: 23-30.
doi: 10.1104/pp.001826 pmid: 12011334
[31] Kang B H, Xiong Y Q, Williams D S, Pozueta-Romero D, Chourey P S. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiol, 2009, 151: 1366-1376.
[32] Lei B, Shao J L, Zhang F, Wang J, Xiao Y H, Cheng Z J, Tang W B, Wan J M. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S. J Integr Agric, 2024, 23: 2155-2163.
doi: 10.1016/j.jia.2023.07.026
[33] 高友军, 刘文婷, 陶勇生, 郑用琏. 玉米Mu转座因子及其应用. 作物学报, 2006, 32: 1236-1243.
Gao Y J, Liu W T, Tao Y S, Zheng Y L. The mutator transposable element of maize and its utilization. Acta Agron Sin, 2006, 32: 1236-1243 (in Chinese with English abstract).
[34] 丁孟丽, 王茹茵, 施栋晟, 李莹博, 雷洁, 陈洪宇, 申清文, 王桂凤. 玉米小籽粒突变体mn-Mu的基因克隆与转录组分析. 作物学报, 2023, 49: 3122-3130.
doi: 10.3724/SP.J.1006.2023.23076
Ding M L, Wang R Y, Shi D S, Li Y B, Lei J, Chen H Y, Shen Q W, Wang G F.Map-based cloning and transcriptomic analysis of a maize miniature kernel mutant mn-Mu. Acta Agron Sin, 2023, 49: 3122-3130 (in Chinese with English abstract).
[35] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 等. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析. 作物学报, 2023, 49: 2088-2096.
doi: 10.3724/SP.J.1006.2023.23059
Wang J, Xu X B, Zhang M L, Liu T S, Xu Q, Dong R, Liu C X, Guan H Y, Liu Q, Wang L M, et al. Characterization and genetic analysis of a new allelic mutant of Miniature1gene in maize. Acta Agron Sin, 2023, 49: 2088-2096 (in Chinese with English abstract).
[36] 陆璐, 陶雅军, 罗学娅, 马君燕. 糖苷水解酶32家族结构与功能的研究进展. 中国酿造, 2019, 38(8): 14-19.
doi: 10.11882/j.issn.0254-5071.2019.08.004
Lu L, Tao Y J, Luo X Y, Ma J Y. Research progress on the structure and function of glycoside hydrolase 32 family. China Brew, 2019, 38(8): 14-19 (in Chinese with English abstract).
[37] Angela Sainz-Polo M, Ramírez-Escudero M, Lafraya A, González B, Marín-Navarro J, Polaina J, Sanz-Aparicio J. Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. J Biol Chem, 2013, 288: 9755-9766.
doi: 10.1074/jbc.M112.446435 pmid: 23430743
[38] Álvaro-Benito M, Sainz-Polo M A, González-Pérez D, González B, Plou F J, Fernández-Lobato M, Sanz-Aparicio J. Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics. J Biol Chem, 2012, 287: 19674-19686.
doi: 10.1074/jbc.M112.355503 pmid: 22511773
[39] Yang B, Wang J, Yu M, Zhang M L, Zhong Y T, Wang T Y, Liu P, Song W B, Zhao H M, Fastner A, et al. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. Plant Cell, 2022, 34: 4232-4254.
[40] Shen S, Ma S, Chen X M, Yi F, Li B B, Liang X G, Liao S J, Gao L H, Zhou S L, Ruan Y L. A transcriptional landscape underlying sugar import for grain set in maize. Plant J, 2022, 110: 228-242.
[41] Yi F, Gu W, Li J F, Chen J, Hu L, Cui Y, Zhao H M, Guo Y, Lai J S, Song W B. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiol, 2021, 185: 985-1001.
[1] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[2] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[3] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[4] YANG Si-Jie, DU Qi-Di, CHAI Shou-Xi, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, GUO Hui-Jun, LIU Lu-Xiang. Genetic mapping of mutant genes on flag leaf length and width in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1548-1557.
[5] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[6] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[7] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[8] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[9] ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399.
[10] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[11] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[12] LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101.
[13] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[14] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[15] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .