Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (04): 553-561.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Dynamic of Grain Falling Number in Spring Wheat and Effects of Nitrogen, Phosphorus Fertilizer and Sowing Date on It during Grain Filling

ZHAO Xiu-Lan   

  1. Key Laboratory of Regional Climate-Environment for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences & START Regional Center for Temperate East Asia, Beijing 100029; 2 National Meteorology Center, Beijing 100081;3 Wheat Laboratory of Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2005-03-21 Revised:1900-01-01 Online:2006-04-12 Published:2006-04-12

Abstract:

More attention has been paid to wheat grain falling number (GFN) that is an important index indicating α-amylase activity and quality property of wheat. Limited published information of GFN dynamics and the effects of environmental conditions on it during grain filling are known. In the present paper, the field experiments of N and P application and sowing date in Harbin in 2002 were conducted to investigate the dynamic pattern in GFN and how it was affected by the N and P fertilizer and meteorological conditions during grain filling using three genotypes of spring wheat with high protein-rich gluten (Wildcat), high protein-medium gluten (DN7742) and low protein-poor gluten(NKH9). The N and P application treatments included F1 (N: 225 kg/ha, P2O5: 450 kg/ha),F2 (N: 300 kg/ha, P2O5: 300 kg/ha), F3 (N: 300 kg/ha, P2O5: 450 kg/ha) and F4 (N: 300 kg/ha, P2O5: 600 kg/ha). The least squares method was used to finish the curve fitting of the dynamic pattern in the grain falling number. The results showed that the dynamic changes in GFN with the increase of days after anthesis could be fitted to a third-order convex curve,i.e. GFN rose in the initial stage and then fell in mid-late stage, and the effects of genotypes and environmental factors on GFN could be expressed by the coefficients and characteristic variables of the curve equation. From the 15th day after anthesis to maturity, with increasing nitrogen in medium phosphorus under high kalium level, GFN and the curve highest value were increased and its corresponding time postponed in high protein-rich gluten genotype, but there were on the contrary in both high protein-medium gluten and low protein-poor gluten genotypes. And GFN in the three genotypes all decreased with increasing phosphorus in medium or low nitrogen and high kalium level, and the characteristic variables of the curve equations varied with different genotypes. The balance fertilization of nitrogen, phosphorus and kalium was the key to get a higher GFN (lower α-amylase activity). Under the condition of moderate rainfall, the interaction of temperature and sunlight was the predominant factor affecting GFN in different genotypes during grain filling, and rainfall was the second one; PAR was the most sensitive meteorological element influencing GFN dynamics. The interaction of higher sunlight and temperature was the basis of higher GFN in different genotypes. Under the precondition of the interaction of higher sunlight and temperature, GFN in high protein-rich gluten genotype was increased with increasing PAR in a certain range while decreased when PAR was beyond the range in both high protein-medium gluten and low protein-poor gluten genotypes. The effects of meteorological conditions and differences among genotypes could be indicated by the dynamic curve changes. High protein-medium gluten and lower proten-poor gluten genotypes were affected more by nitrogen and phosphorus fertilizer but less by meteorological conditions than high protein-rich gluten genotype. Comparatively, high protein-rich gluten genotype was more sensitive to meteorological factors while high protein-medium gluten and lower protein-poor gluten genotypes were more sensitive to nitrogen and phosphorus fertilizer.

Key words: Spring wheat, Grain falling number (GFN), Dynamic formation, Nitrogen and phosphorus fertilizer, Sowing date

CLC Number: 

  • S512
[1] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[2] LI Bo, ZHANG Chi, ZENG Yu-Ling, LI Qiu-Ping, REN Hong-Chao, LU Hui, YANG Fan, CEHN Hong, WANG Li, CHEN Yong, REN Wan-Jun, DENG Fei. Effects of sowing date on eating quality of indica hybrid rice in Sichuan Basin [J]. Acta Agronomica Sinica, 2021, 47(7): 1360-1371.
[3] DONG Ming-Hui, CHEN Pei-Feng, JIANG Yi, CAO Peng-Hui, SONG Yun-Sheng, GU Jun-Rong, XIE Yu-Lin, QIAO Zhong-Ying, ZHANG Wen-Di, HUANG Li-Fen. Response of yield of different growth types of japonica rice varieties to climatic factors at different sowing dates in Taihu region of Jiangsu province [J]. Acta Agronomica Sinica, 2021, 47(5): 952-963.
[4] DONG Yu-Xin, WEI Bing-Qi, WU Qiang, ZHANG Yong-Ping. Cropping effect and variety adaptability of winter-seeded spring wheat in Inner Mongolia Plain irrigation area [J]. Acta Agronomica Sinica, 2021, 47(3): 481-493.
[5] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[6] ZHONG Xiao-Yuan, DENG Fei, CHEN Duo, TIAN Qing-Lan, ZHAO Min, WANG Li, TAO You-Feng, REN Wan-Jun. Effects of sowing date on the numbers of branches and spikelets per panicle of machine-transplanted indica hybrid rice at different tiller positions [J]. Acta Agronomica Sinica, 2021, 47(10): 2012-2027.
[7] HOU Hui-Zhi, ZHANG Xu-Cheng, FANG Yan-Jie, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning. Effects of micro ridge-furrow with plastic mulching on soil hydrothermal environment and photosynthesis at seedling stage of spring wheat on cold rain-fed area [J]. Acta Agronomica Sinica, 2020, 46(9): 1398-1407.
[8] Ming-Sheng MA, Xian-Shi GUO, Yan-Lan LIU. Effects of full biodegradable film on soil water status and yield and water use efficiency of spring wheat in dryland [J]. Acta Agronomica Sinica, 2020, 46(12): 1933-1944.
[9] CHEN Tian-Ye, YUAN Jia-Qi, LIU Yan-Yang, XU Ke, GUO Bao-Wei, DAI Qi-Gen, HUO Zhong-Yang, ZHANG Hong-Cheng, LI Guo-Hui, WEI Hai-Yan. Effects of different sowing dates on crop yield, quality, and annual light-temperature resources utilization for rice-wheat double cropping system in the lower reaches of the Yangtze-Huaihe Rivers valley [J]. Acta Agronomica Sinica, 2020, 46(10): 1566-1578.
[10] ZHANG Chi, HE Lian-Hua, LIAO Shuang, GAO Yun-Tian, ZHU Shi-Lin, LI Bo, ZHOU Wei, CHEN Yong, HU Jian-Feng, XIANG Zu-Fen, REN Wan-Jun. Effect of sowing date on daily yield of mechanical indica hybrid rice under different ecological conditions [J]. Acta Agronomica Sinica, 2020, 46(10): 1579-1590.
[11] Yue-E LIU,Tian-Fang LYU,Jiu-Ran ZHAO,Rong-Huan WANG,Tian-Jun XU,Chuan-Yong CHEN,Yi-Tian ZHANG,Yuan-Dong WANG,Xiu-Zhi LIU. Silking duration characteristics in different maize hybrids and its response to sowing date [J]. Acta Agronomica Sinica, 2019, 45(2): 310-315.
[12] Cai ZHAO,Qiao-Mei WANG,Yao GUO,Wen YIN,Zhi-Long FAN,Fa-Long HU,Ai-Zhong YU,Qiang CHAI. Effects of Water-Nitrogen Coupling Patterns on Dry Matter Accumulation and Yield of Wheat under No-tillage with Previous Plastic Mulched Maize [J]. Acta Agronomica Sinica, 2018, 44(11): 1694-1703.
[13] Pan-Pan AN, Bo MING, Peng-Fei DONG, Miao ZHANG, Da-Zhao HUANG, Ya-Li ZHAO, Chao-Hai LI. Response of Maize (Zea mays L.) Yield to Climatic Ecological Condition on the South Yellow-Huaihe-Haihe Rivers Plain [J]. Acta Agronomica Sinica, 2018, 44(03): 442-453.
[14] MA Zhong-Ming,CHEN Juan,LYUXiao-Dong,LIU Ting-Ting. Effects of Water and Nitrogen Coupling on Root Length Density and Yield of Spring Wheat in Permanent Raised-bed Cropping System [J]. Acta Agron Sin, 2017, 43(11): 1705-1714.
[15] Lü Li-Hua,LIANG Shuang-Bo,ZHANG Li-Hua,JIA Xiu-Ling,DONG Zhi-Qiang,YAO Yan-Rong. Yield in Response to Accumulated Temperature before Winter in Winter Wheat [J]. Acta Agron Sin, 2016, 42(01): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!