Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (02): 333-336.doi: 10.3724/SP.J.1006.2008.00333

• RESEARCH NOTES • Previous Articles     Next Articles

Relationship between Changes of Na+, K+, and Ca2+ Contents during Seed Germination and Salt Tolerance in Maize

SHANG Xue-Fang12,DONG Shu-Ting1*,ZHENG Shi-Ying2,WANG Li-Yan2   

  1. 1 Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, Shandong; 2 Dezhou College, Dezhou 253023, Shandong, China

  • Received:2007-04-16 Revised:1900-01-01 Online:2008-02-12 Published:2008-02-12
  • Contact: DONG Shu-Ting

Abstract:

Maize (Zea mays L.) seeds of a salt tolerant cultivar Denghai 9 and a salt sensitive cultivar Jundan 18 were germinated and grown in 1/4 and 1/2 Hoagland solutions with 0, 50, 100, 150, and 200 mmol L-1 NaCl, respectively. The contents of Na+, K+, and Ca2+ in testa, embryo, endosperm, roots, root crown, and leaf were measured by ICP Mass. The Na+ content increased accordantly with the NaCl concentration in culture solution. In young seedlings, Na+ content in root and root crown was higher than that in leaf; in germinating seeds, it was significantly higher in embryo than in testa and endosperm. The capacity of Na+ accumulation in roots was strong, while the capacity of Na+ rejection in embryo was weak. The testa could also accumulate some Na+. The K+ and Ca2+ contents in germinating seeds and young seedlings of maize decreased obviously under NaCl stress, and the Ca2+ content showed changes in a large scale, which was 38.4%–55.9% in Denghai 9 and 65.6%–78.2% in Jundan 18. The capacities of Na+ accumulation and rejection as well as the Ca2+ selective absorption might be related to salt-tolerance of maize cultivars

Key words:

Maize, Salt stress, Na+ content, K+ content, Ca2+ content, Seed germination

[1] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[2] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[5] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[6] Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922.
[7] LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816.
[8] CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439.
[9] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[10] TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028.
[11] Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE. A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses [J]. Acta Agronomica Sinica, 2018, 44(6): 824-835.
[12] Guang-Long ZHU,Cheng-Yu SONG,Lin-Lin YU,Xu-Bing CHEN,Wen-Fang ZHI,Jia-Wei LIU,Xiu-Rong JIAO,Gui-Sheng ZHOU. Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis [J]. Acta Agronomica Sinica, 2018, 44(11): 1713-1724.
[13] HAO Ling,XING Jia-Peng,DUAN Liu-Sheng,ZHANG Ming-Cai*,LI Zhao-Hu. Growth Regulation and the Mechanism of Propiconazole in Maize Seedlings [J]. Acta Agron Sin, 2017, 43(11): 1603-1610.
[14] SHA Han-Jing, HU Wen-Cheng, JIA Yan, WANG Xin-Peng, TIAN Xue-Fei, YU Mei-Fang, and ZHAO Hong-Wei*. Effect of Exogenous Salicylic Acid, Proline and γ-Aminobutyric Acid on Yield of Rice under Salt Stress [J]. Acta Agron Sin, 2017, 43(11): 1677-1688.
[15] WU Lyu, DAI Li-Qiang, DONG Qing-Song, SHI Ting-Ting,WANG Pi-Wu*. Genome-wide Association Analysis of Kernel Number per Row in Maize [J]. Acta Agron Sin, 2017, 43(10): 1559-1564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!