Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (7): 1236-1243.doi: 10.3724/SP.J.1006.2009.01236
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
NAN Hai-Yang,LI Ying-Hui**,CHANG Ru-Zhen,QIU Li-Juan*
[1] Liu W-Z(刘维志), Liu Y(刘晔), Chen P-S(陈品三). Preliminary report of identify the races of SCN in some city & county of Northeast. J Shenyang Agric Coll (沈阳农学院学报), 1984, (2): 74-78(in Chinese) [2] Liu H-Q(刘汉起), Shang S-G(商绍刚), Huo H(霍虹), Wu H-L(吴和礼). Resistance of soybean varieties to race 1,3 and 4 of soybean cyst nematode. Soybean Sci (大豆科学), 1989, 8(1): 113-114(in Chinese) [3] Lu W-G(卢为国), Gai J-Y(盖钧镒), Li W-D(李卫东). Sample survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai valley. Sci Agric Sin (中国农业科学),2006, 39(2): 306-312(in Chinese with English abstract) [4] Shang S-G(商绍刚), Liu H-Q(刘汉起). The distribution of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Dongbei. Soybean Sci (大豆科学), 1989, 8(4): 382(in Chinese) [5] Liu P-Y(刘佩印). Advances in study of screening and utilization for antigen to soybean cyst nematode. Heilongjiang Agric Sci (黑龙江农业科学), 2005, (6): 44-47 (in Chinese with English abstract) [6] Riggs R D, Schmidt D P. Complete characterization of the race scheme for Heterodera glycines. J Nematol, 1988, 20: 392-395 [7] Caviness C E. Breeding of Resistance to Soybean Cyst Nematode. In: Riggs R D, Wrather J A, eds. Biology and Management of the Soybean Cyst Nematode. St. Paul, Minnesota: APS Press, 1992. pp 143-156 [8] Cregan P B, Mudge J, Fickus E W, Denny R, Danesh R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811-818 [9] Arelli A P, Anand S C, Wrather J A. Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene. Crop Sci, 1992, 32: 862-864 [10] Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci, 2004, 44: 1121-1131 [11] Ruben E, Aziz J, Afzal J, Njiti V N, Triwitayakorn K, Iqbal M J, Yaegashi S, Arelli P, Town C, Meksem K, Lightfoot D A. Genomic analysis of the rhg1 locus: Candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genome, 2006, 276: 503-516 [12] Concibido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci, 1994, 34: 240-246 [13] Concibido V C, Boutin S, Denny R L, Hautea R, Orf J, Young N D. Targeted comparative genome analysis and qualitative mapping of a major partial resistance gene to the soybean cyst nematode. Theor Appl Genet, 1996, 93: 234-241 [14] Webb D M, Baltazar B M, Arelli A P, Schupp J, Keim P, Clayton K, Ferreira A R, Owens T, Beavis W D. QTL affecting soybean cyst nematode resistance. Theor Appl Genet, 1995, 91: 574-581 [15] Chang S J C, Doubler T W, Kilo V, Suttner R J, Klein J, Schmidt M E, Gibson P T, Lightfoot D A. Association of loci underlying field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN) race 3. Crop Sci, 1997, 372: 965-971 [16] Prabhu R R, Njiti V, Bell-Johnson B, Johnson J E, Schmidt M E, Klein J, Lightfoot D A. Selecting soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome using two DNA markers. Crop Sci, 1999, 39: 982-987 [17] Meksem K, Ruben E, Hyten D L, Schmidt M E, Lightfoot D A. High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance gene Rhg4 by using Taqman (TM) probes. Mol Breed, 2001, 7: 63-71 [18] Yue P, Sleper D A, Arelli P R. Mapping resistance of multiple races of Heterodera glycines in soybean PI89772. Crop Sci, 2001, 41: 1589-1595 [19] Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI404198A. Crop Sci, 2006, 46: 224-233 [20] Goffinet B, Gerber S. Quantitative trait loci: A meta-analysis.Genetics, 2000, 155: 463-473 [21] Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL locations. Crop Sci, 2006, 46: 595-602 [22] Lightfoot D A, Meksem K. Novel polynucleotides and polypeptides relating to loci underlying resistance to soybean cyst nematode and methods of use thereof. Patent pending # 09/772, 134. Filing date 2000-01-29 [23] Hauge B M, Wang M L, Parsons J D, Parnell L D. Nucleic acid molecules and other molecules associated with soybean cyst nematode resistance. WO 01/51627 PCT/US01/00552 Patent # 20030005491 [24] Concibido V C, Lange D A, Denny R L, Hautea R, Orf J, Young N D. Genome mapping soybean cyst nematode resistance genes in Peking, PI90763 and PI88788 using DNA markers. Crop Sci, 1997, 37: 258-264 [25] Heer J A, Knap H T, Mahalingam R, Shipe E R, Arelli P R, Matthews B F. Molecular markers for resistance to Heterodera glycines in advanced soybean germplasm. Mol Breed, 1998, 4: 359-367 [26] Meksem K, Pantazopoylos P, Niti V N, Hyten L D, Arelli P R. ‘Forrest’ resistance to soybean cyst nematode is bigenic: Saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet, 2001, 103: 710-714 [27] Mudege J, Cregan P B. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611-1615 [28] Qiu B X, Arelli P R, Sleper D A. RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’× ‘Essex’ population. Theor Appl Genet, 1999, 98: 356-364 [29] Ma Y S, Wang W H, Wang L X, Ma F M, Wang P W, Chang R Z, Qiu L J. Genetic diversity of soybean and the establishment of a core collection focused on resistance to soybean cyst nematode. J Integr Plant Biol, 2006, 48: 722-731 [30] Liu M S, Amirkhanian V D. DNA fragment analysis by an affordable multiple-channel capillary electrophoresis system (Short communication). Electrophoresis-Weinheim, 2003, 24: 93-95 [31] Mills R E, Luttig C T, Larkins C E, Beauchamp A, Tsui C, Pittard W S, Devine S E. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res,2006, 16: 1182-1190 [32] Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Lily Q, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205 [33] Feltus F A, Wan J, Schulze S R, Wan J, Estill J C, Jiang N, Paterson A H. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res, 2004, 14: 1812-1819 [34] Dinakar B, Maureen D, Mike H, Robin W, Dave V, James C R. Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol, 2002, 48: 539-547 [35] Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, Van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: Gene distribution, haplotype and SNP analysis. Genetics, 2007, 176: 685-696 [36] Ellegren H. Microsatellites: Simple sequences with complex evolution. Nat Rev Genet, 2004, 5: 435-445 [37] Li Y H, Guan R X, Ma Y S, Wang L X, Li L H, Lin F Y, Luan W J, Chen P Y, Yan Z, Guan Y, Zhu L, Ning X C, Smulders M J M, Li W, Piao R H, Cui Y H, Yu Z M, Guan M, Chang R Z, Liu Z X, Hou A F, Shi A N, Zhang B, Zhu S L, Qiu L J. Genetic structure and diversity of cultivated soybean [Glycine max (L.) Merr.] landraces in China. Theor Appl Genet, 2008, 117: 857-871Feng F-J(冯芳君), Luo L-J(罗利军), Li-Y(李荧), Zou L-G(周立国), Xu X-Y(徐小艳), Wu J-H(吴金红), Chen H-W(陈宏伟), Chen L(陈亮), Mei H-W(梅捍卫). Comparative analysis of polymorphism of InDel and SSR markers in rice. Mol Plant Breed (植物分子育种), 2005, 3(5): 725-730(in Chinese with English abstract) |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[12] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[13] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
[14] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[15] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
|