Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (10): 1942-1947.doi: 10.3724/SP.J.1006.2009.01942

• RESEARCH ACTIVITIES • Previous Articles    

In silico Mapping and Structure Analysis of Key Enzyme Genesis in Fatty Acid Synthesis of Soybean

SONG Wan-Kun1,2,ZHU Ming-Xi1,2,ZHAO Yang-Lin1,WANG Jing1,LI Wen-Fu1,LIU Chun-Yan1,2,CHEN Qing-Shan2,*,HU Guo-Hua1,3,*   

  1. 1The Crop Research and Breeding Center of Land-Reclamation,Harbin 150090,China;2Agriculture College,Northeast Agricultural University,Harbin 150030,China;3The National Research Center of Soybean Engineering and Technology,Harbin 150050,China
  • Received:2009-01-15 Revised:2009-04-26 Online:2009-10-12 Published:2009-07-04
  • Contact: HU Guo-hua,E-mail:hugh757@vip.163.com;CHEN Qing-Shan,E-mail:qshchen@126.com;Tel:0451-55191945

Abstract:

The 12 genes of key enzyme such as acyl-CoA carboxylase and fatty acid synthase in fatty acid synthesis were mapped on the newest genetic map integrating from physical map and genetic map, and the gene structure was analyzed. They were mapped on nine linkage groups, including A2, B2, C2, D1b, D2, G, I, L, M, and the flank markers of the gene on the linkage groups were obtained. At the same time, we compared the sequence information of cDNA with gDNA to get the structure information of the 12 genes, with the number of intron from 0 to 30. FAD2-1, FAD2-2, FAD2-3, and FatB were all single extron gene, but there were six introns in KASI, twelve introns in KASII, two introns in SACPD, and seven introns in FAD3. So the corresponding markers obtained from the mapping are available for molecular assisted selection, while the structure information can be better used in gene function analysis.

Key words: Soybean, Fatty acid, Gene, In silico mapping, Gene structure

[1] Lackey J A. Chromosome numbers in the Phaseoleae and their relation to taxonomy. Am J Bot, 1980, 67: 595-602

[2] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995,7: 957-970

[3] Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotin-containing carboxylases. Arch Biochem Biophys, 2003, 414: 211-222

[4] Somerville C, Browse J, Jaworski J G, Ohlrogge J. Biochemistry and Molecular Biology of Plants. Amer. Soc. of Plant Physiologists, Rockville, MD, 2000, pp 456-527

[5] Anderson J V, Lutz S M, Gengenbach B G, Gronwald J W. Genomic sequence for a nuclear gene encoding acetyl-coenzyme A carboxylase (accession No. L42814) in soybean (95-055). Plant Physiol, 1995, 109: 338

[6] Aghoram K, Wilson R F, Burton J W, Dewey R E. A mutation in a 3-keto-acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds. Crop Sci, 2006, 46: 2453-2459

[7] Dehesh K, Tai H, Edwards P, Byrne J, Jaworski J G. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate oflipid synthesis. Plant Physiol, 2001, 125: 1103-1114

[8] Cardinal A J, Burton J W, Camacho-Roger A M, Yang J H, Wilson R F, Dewey R E. Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci, 2007, 47: 304-310

[9] Chen L, Moon Y, Shanklin J, Nikolau B, Atherly A G. Cloning and sequence of a cDNA encoding stearoyl-acyl carrierprotein desaturase from Glycine Max. Plant Physiol, 1994, 109: 1498

[10] Heppard E P, Kinney A J, Stecca K L, Miao G H. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol, 1996, 110: 311-319

[11] Byfield G E, Upchurch R G.Effect of temperature on delta-9 stearoyl-ACP and microsomal omega-6 desaturase geneexpression and fatty acid content in developing soybean seeds. Crop Sci, 2007, 47: 1698-1704

[12] Bilyeu K D, Palavalli L, Sleper D A, Beuselinck P R. Three microsomal omega-3-fatty acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci, 2003, 43: 1833-1838

[13] Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K K, Lark G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genet Soc Am, 2007, 176: 685-696

[14] Qi Z M, Li H, Wu Q, Sun Y N, Liu C Y, Hu G H, Chen Q S. An integrated map of soybean physical map and genetic map. J Northeast Agric Univ, 2009, 16(2): 12-16

[15] Zheng Y-Z(郑永战), Gai J-Y(盖钧镒), Lu W-G(卢为国), Li W-D(李卫东), Zhou R-B(周瑞宝), Tian S-J(田少君). QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin (作物学报), 2006, 32(12): 1823-1830(in Chinese with English abstract)

[16] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[17] Yu Y G, Saghai-Maroof M A, Buss G R, Maughan P J, Tolin S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology, 1994, 84: 60-64

[18] Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907-913
Conclbido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycine Ichinohe). Crop Sci, 1994, 34: 240-246
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[3] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[4] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[5] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[6] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[7] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[8] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[9] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[10] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[11] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[12] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[13] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[14] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[15] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!