Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (12): 2174-2179.doi: 10.3724/SP.J.1006.2009.02174

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Characterization of GmTINY1 Gene in Soybean(Glycine max

HUANG Fang,HE Hui,CHI Ying-Jun,GAI Jun-Yi,YU De-Yue*   

  1. National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-04-23 Revised:2009-07-21 Online:2009-12-10 Published:2009-09-07
  • Contact: YU Deng-Yue,E-mail:dyyu@njau.edu.cn

Abstract:

Plant reproductive development involves the coordination of a lot of genes encoding transcription factors.The AP2 domain transcription factors have been proved with critical roles in plant reproductive development.By microarray analysis, we identified a gene which showed higher expression in pod as 500 folds as that in leaf of soybean. The Blast searches indicated this gene encodes a dehydration responsive element binding protein (DREB)-like protein showing highest similarity to Arabidopsis TINY, therefore named as GmTINY1. By searching soybean genome and EST databases, the putative full-length cDNA sequence for GmTINY1 was in silico assembled. The GmTINY1 gene was cloned from soybean seeds at 15 DAF (days after flowering) by RT-PCR. GmTINY1 contained a complete open reading frame (ORF) of 755 bp which encoded a peptide of 244 amino acids. The predicted molecular mass and isoelctric point of GmTINY1 are 26.76 kD and 5.12, respectively. An AP2 domain and a ser-rich domain were identified in GmTINY1 amino acid sequence by Motif Scan server. The GmTINY1 encoding product showed 59% and 62% sequence similarities with Arabidopsis TINY and TINY2, respectively. Multiple sequences alignment revealed that a highly conserved AP2 domain was present in each AP2 domain transcription factor. In this AP2 domain, it was found that a Ser66 was specifically present in GmTINY1, DREB1B, TINY and TINY2 proteins but a Cys66 in DREB1A and DREB1C proteins, indicating, like Arabidopsis TINY, TINY2 and DREB1B, GmTINY1 might be able to bind both the dehydration responsive element(DRE) and ethylene responsive element (ERE) motifs while DREB1A and DREB1C only bind DRE motif. Besides, it was found that a ser-rich domain probably involving translational modification on GmTINY1 protein was located close to AP2 domain. The neighbor-joining phylogenetic tree showed that the AP2 domain transcription factors were grouped into four subfamilies: DREB, ERF, AP2, and RAV; and GmTINY1, TINY, and TINY2 were grouped into a branch which attributed to the DREB subfamily. With an attempt to understand the biological role for GmTINY1 and to verify the microarray result, we used the Real-time quantitative PCR approach to analyze the expression pattern of GmTINY1 in various soybean organs. We found that expression of GmTINY1 was highest in pod, relatively lower in flower and root but undetectable in leaf, indicating GmTINY1 may play some roles in soybean reproductive organs and root, but not in leaf. The Blast search results against soybean EST database also supported the specific expression of GmTINY1 in soybean pod and root. We analyzed GmTINY1 expression during the course of seed development based on publicly available microarray data and found that GmTINY1 was expressed with a low level at the globular stage and heart stage but highly expressed in hilum at the cotyledon stage embryos. Taken together, it is suggested that GmTINY1 may play some regulatory role in soybean reproductive development, such as the formation of hilum in soybean.

Key words: Soybean, Transcription factory, AP2, TINY, DREB

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[14] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[15] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!