Cotton is a leading textile fiber crop in the world and a source of secondary products such as oil, live- stock feed (cotton seed cake) and cellulose. The improvement of cotton fiber quality is becoming extremely important with the innovation of spinning technology. A genetic map is necessary not only for the reliable detection, mapping and estimation of gene effects of important agronomic traits, but also for further research on the structure, organization, evolution and function of cotton genome. In the present study, simple sequence repeats (SSRs) and amplified fragment length polymorphism (AFLP)were used to assay anF2 population from a cross between CRI8 (Gossypium hirsutum L.) and Pima90-53 (Gossypium barbadense L.). Two hundred and fourteen F2plantswere used for map construction using 110 SSRs and 65 AFLPs. This map included 175 markers distributing on 42 linkage groups, covering 2030cM, accounting for 40.6% of the cotton genome, and with an average distance of 11.6 cM between two markers. The length of linkage groups ranged from 4.5to 147.3 cM and the markers on the groups ranged from 2 to 22. The linkage map waslocated on 10 chromosomes,which were Chr.4, Chr.8, Chr.9, Chr.10, Chr.12, Chr.14, Chr.15, Chr.18, Chr.21, and Chr.25.Based on composite interval mapping, five QTLs were identified for fiber length, distributing on Chr.21, Chr.15, LG2, and LG12, explaining 10.2%–35.8% of the fiber length variance. Four QTLs were identified for length uniformity, distributing on Chr.21, LG9, LG18, and LG12, explaining 12.6%–36.6% of the fiber length uniformity variance. Seven QTLs were identified for micronaire, distributing on Chr.9, LG1, LG9, LG20, and LG12, explaining 11.5%–26.1% of the fiber micronaire variance. Seven QTLs were identified for strength, distributing on Chr.21, Chr.12, Chr.8, LG1, LG4, and LG10, explaining 16.5%–52.8% of the fiber strength variance. Two QTLs were identified for fiber elongation, distributing on Chr.9 and Chr.21, explaining 18.1% and 27.1% of the fiber elongation variance.Assembledsection of QTLs existed in LG9, LG12, and Chr.21. The present map and QTL analysis may provide a useful tool for breeders to transfer desirable traits from G. barbadense to the mainly cultivated species, G. hirsutum.