Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (12): 2159-2166.doi: 10.3724/SP.J.1006.2009.02159


Construction of Molecular Genetic Map and QTL Analysis of Fiber Quality in Cotton(Gossypium hirsutum L.)

YANG Xin-Lei,WANG Zhi-Wei,ZHANG Gui-Yin,PAN Yu-Xin,WU Li-Qiang,LI Zhi-Kun,WANG Xing-Fen,MA Zhi-Ying*   

  1. Key Laboratory of Crop Germplasm Resources of Hebei,Agricultural University of Hebei,Baoding 071001,China
  • Received:2009-04-10 Revised:2009-07-24 Online:2009-12-10 Published:2009-10-13
  • Contact: MA Zhi-Ying,E-mail:mzhy@hebau.edu.cn,Tel:0312-7528401;WANG Xing-Fen,E-mail:cotton@hebau.edu.cn,Tel:0312-7528401


Cotton is a leading textile fiber crop in the world and a source of secondary products such as oil, live- stock feed (cotton seed cake) and cellulose. The improvement of cotton fiber quality is becoming extremely important with the innovation of spinning technology. A genetic map is necessary not only for the reliable detection, mapping and estimation of gene effects of important agronomic traits, but also for further research on the structure, organization, evolution and function of cotton genome. In the present study, simple sequence repeats (SSRs) and amplified fragment length polymorphism (AFLP)were used to assay anF2 population from a cross between CRI8 (Gossypium hirsutum L.) and Pima90-53 (Gossypium barbadense L.). Two hundred and fourteen F2plantswere used for map construction using 110 SSRs and 65 AFLPs. This map included 175 markers distributing on 42 linkage groups, covering 2030cM, accounting for 40.6% of the cotton genome, and with an average distance of 11.6 cM between two markers. The length of linkage groups ranged from 4.5to 147.3 cM and the markers on the groups ranged from 2 to 22. The linkage map waslocated on 10 chromosomes,which were Chr.4, Chr.8, Chr.9, Chr.10, Chr.12, Chr.14, Chr.15, Chr.18, Chr.21, and Chr.25.Based on composite interval mapping, five QTLs were identified for fiber length, distributing on Chr.21, Chr.15, LG2, and LG12, explaining 10.2%–35.8% of the fiber length variance. Four QTLs were identified for length uniformity, distributing on Chr.21, LG9, LG18, and LG12, explaining 12.6%–36.6% of the fiber length uniformity variance. Seven QTLs were identified for micronaire, distributing on Chr.9, LG1, LG9, LG20, and LG12, explaining 11.5%–26.1% of the fiber micronaire variance. Seven QTLs were identified for strength, distributing on Chr.21, Chr.12, Chr.8, LG1, LG4, and LG10, explaining 16.5%–52.8% of the fiber strength variance. Two QTLs were identified for fiber elongation, distributing on Chr.9 and Chr.21, explaining 18.1% and 27.1% of the fiber elongation variance.Assembledsection of QTLs existed in LG9, LG12, and Chr.21. The present map and QTL analysis may provide a useful tool for breeders to transfer desirable traits from G. barbadense to the mainly cultivated species, G. hirsutum.

Key words: Cotton, Genetic map, SSR, AFLP, Fiber quality, QTL

[1] Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, WendelJF, Paterson AH. A detailed RFLP map ofcotton Gossypium hirsutum × Gossypium barbadense:Chromosomeorganization and evolution in a disomicpolyploid genome. Genetics, 1994, 138:829-847
[2] Han Z G,Wang C B,Song X L,Guo W Z,Guo J Y,Li C H,Chen X Y,Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439
[3] Ulloa M, Meredith WR, Shappley ZW, Kahler AL. RFLP genetic linkage maps from F2:3 populations anda joinmap of Gossypium hirsutum. Theor Appl Genet, 2002, 104:200-208
[4] Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166-1174
[5] Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B,Courtois B, Cantrell RG, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploidcotton based on Gossypium hirsutum × Gossypiumbarbadense backcross population. Genome, 2003, 46:612-626
[6] Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C,Chee PW, Delmonte TA, Ding X, Garza JJ, MarlerBS, Park C, Pierce GJ, Rainey KM, Rastogi VK,Schulze SR, Trolinder NL, Wendel JF, Wilkins TA,Williams-Coplin TD, Wing RA, Wright RJ, Zhao X,Zhu L, Paterson AH. A 3347-locus geneticrecombination map of sequence-tagged sites revealsfeatures of genome organization, transmission andevolution of cotton (Gossypium). Genetics, 2004, 166:389-417
[7] Nguyen TB, Giband M, Brottier P, Risterucci AM, LacapeJM. Wide coverage of the tetraploid cottongenome using newly developed microsatellite markers.Theor Appl Genet, 2004, 109:167-175
[8] Guo W Z, CaiC P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541
[9] Guo W Z, CaiC P, Wang C B, Zhao L, Wang L, Zhang T Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9:314
[10] Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z,Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integra Plant Biol, 2007, 49: 716-724
[11] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using theinterspecific cross of Gossypium hirsutum×Gossypium barbadense. Euphytica, 2006, 153: 181-197
[12] Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M,Gourlot JP, Gawryziak G,Roques S, Hau B. QTL analysis of cotton fiber quality using multipleGossypium hirsutum×Gossypium barbadense backcrossgenerations. Crop Sci, 2005, 45:123-140
[13] Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, StellyDM, Chen ZJ. Genetic mapping and QTLanalysis of fiber-related traits in cotton (Gossypium).Theor Appl Genet, 2004, 108:280-291
[14] Lin ZX, He DH, Zhang XL, Nie YC, Guo XP, Feng CD,Stewart JMcD. Linkage map construction andmapping QTLs for cotton fiber quality using SRAP,SSR and RAPD. Plant Breed, 2005, 124:180-187
[15] Shen X L, Guo W Z, Zhu X F, Yuan Y L, Yu Z, KohelJ, Zhang T Z.Molecular mapping of QTLs for fiber qualities in three diverse linesin Upland cotton using SSR markers.Mol Breed, 2005, 15: 169-181
[16] Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ. Molecular tagging of a major QTL for fiber strengthin upland cotton and its marker-assisted selection.Theor Appl Genet, 2003, 106:262-268
[17] Paterson AH, Brubaker CL, Wendel JF. A rapidmethod for extraction of cotton (Gossypium spp.)genomic DNA suitable for RFLP and PCR analysis.Plant Mol Biol Rep, 1993, 11:112-127
[18] Zhang J(张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci (棉花学报), 2000, 12: 267-269(in Chinese with English abstract)
[19] Vuylsteke M, Peleman J D, van Eijk M JT. AFLP technology for DNA fingerprinting. Nature Protocols, 2007, 2: 1387-1398
[20] Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ,Lincoln SE, Newburg I. MAPMAKER: Aninteractive computer package for constructing primarygenetic linkage maps of experimental and naturalpopulations. Genomics, 1987, 1:174-181
[21] Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered,2002,93: 77-78
[22] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 user manual. North Carolina State University, 2005
Wang K, Song X L, Han Z G, Guo W Z, JohnZYu,Sun J, Pan J J, KohelJ, Zhang T Z. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113: 73-80
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[6] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[7] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[8] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[9] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[10] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[11] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[12] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[13] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[14] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[15] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
Full text



No Suggested Reading articles found!