Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (4): 612-619.doi: 10.3724/SP.J.1006.2010.00612
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GAN Lu1,2,LI Dian-Rong1,3,ZANG Xin4,FU Chun-Hua1,2,YU Long-Jiang1,2,LI Mao-Teng12*
[1] Choe L H, Lee K H. A comparison of three commercially available isoelectricfocusing units for proteome analysis: The multiphor, the IPGphor and the protean IEF cell. Electrophoresis, 2000, 21: 993–1000 [2] Cutler P, Bell D J, Birrell H C, Connelly J C, Connor S C, Holmes E, Mitchell B C, Monté S Y, Neville B A, Pickford R, Polley S, Schneider K, Skehel J M. An integrated proteomic approach to studying glomerular nephrotoxicity. Electrophoresis, 1999, 20: 3647–3658 [3] Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21: 1037–1053 [4] Liang Y(梁宇), Jing Y-X(荆玉祥), Shen S-H(沈世华). Advances in plant proteomics. Acta Phytoecol Sin (植物生态学报), 2004, 28(1): 114–125 (in Chinese with English abstract) [5] O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250: 4007–4021 [6] Bjellqvist B, Ek K, Righetti P G, Gianazza E, Görg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications. J Biochem Biophys Methods, 1982, 6: 317–39 [7] Lei H-L(雷红灵), Fu M(付明), WU Y-Y(吴永尧). Study on two-dimension electrophoresis of seed proteins of Cardamine enshiensis. Hubei Agric Sci (湖北农业科学), 2008, 47(10): 1114–1116 (in Chinese with English abstract) [8] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed Germination: A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837 [9] Jiang Y Q, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58: 3591–3607 [10] Rutschow H, Ytterberg A J, Friso G, Nilsson R, van Wijk K J. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. Plant Physiol, 2008, 148: 156–175 [11] Parker T, Flowers T J, Moore A L, Harpham N V. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006, 57: 1109–1118 [12] Kim S T, Kim S G, Kang Y H, Wang Y, Kim J Y, Yi N, Kim J K, Rakwal R, Koh H J, Kang K Y. Proteomics analysis of rice lesion mimic mutant (sp/1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res, 2008, 7: 1750–1760 [13] Natarajan S, Xu C, Caperna T J, Garrett W M. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem, 2005, 342: 214–220 [14] Amme S, Rutten T, Melzer M, Sonsmann G, Vissers J P, Cschlesier B, Mock H P. A proteome approach defines protective functions of tobacco leaf trichomes. Proteomics, 2005, 5: 2508–2518 [15] Chen S B, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: Effect of genotype and exogenous application of glycinebetaine. J Exp Bot, 2009, 60: 2005–2019 [16] Huang Pu-H-Y(皇甫海燕), Guan C-Y(官春云), Guo B-S(郭宝顺), Zhang X-Y(张秀英). Progress in proteomics and plant proteomics research. Crop Res (作物研究), 2006, 5: 577–581 (in Chinese with English abstract) [17] Meza-Basso L, Alberdi M, Raynal M, Ferrero-Cadinanos M L, Delseny M. Changes in protein synthesis in rapeseed (Brassica napus) seedlings during a low temperature treatment. Plant Physiol, 1986, 82: 733–738 [18] Mihr C, Baumgartner M, Dieterich J H, Schmitz U K, Braun H P. Proteomic approach for investigation of cytoplasmic male sterility (CMS) in Brassica. J Plant Physiol, 2001, 158: 787–794 [19] Hajduch M, Casteel J E, Hurrelmeyer K E, Song Z, Agrawal G K, Thelen J J. Proteomic analysis of seed filling in Brassica napus: Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis1. Plant Physiol, 2006, 141: 32–46 [20] Agrawal G K, Hajduch M, Graham K, Thelen J J. In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol, 2008, 148: 504–518 [21] Sheoran I S, Pedersen E J, Ross A R, Sawhney V K. Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta, 2009, 230: 779–793 [22] Desclos M, Dubousset L, Etienne P, Caherec F L, Satoh H, Bonnefoy J, Ourry A, Avice J C. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol, 2008, 147: 1830–1844 [23] Damerval C, Vienne D D, Zivy M, Thiellement H. Technical improvement in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling protein. Electrophoresis, 1986, 7: 53–54 [24] Gu R-S(谷瑞升), Liu Q-L(刘群录), Chen X-M(陈雪梅), Jiang X-N(蒋湘宁). An improved method of 2D electrophoresis for protein analysis of woody plants. J Beijing For Univ (北京林业大学学报–10 (in Chinese with English abstract)), 1999, 21(5): 7 [25] Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M, Carnemolla B, Orecchia P, Zardi L, Righetti P G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis,2004, 25: 1327–1333 [26] Li X H, Wu X F, Yue W F, Liu J M, Li G L, Miao Y G. Proteomic analysis of the silkworm (Bombyx mori L.) hemolymph during developmental stage. J Proteome Res, 2006, 5: 2809–2814 [27] Ruan S-L(阮松林), Ma H-S(马华升), Wang S-H (王世恒), Xin Y(忻雅), Qian L-H(钱丽华), Tong J-X(童建新), Zhao H-P(赵杭苹), Wang J(王杰). Adevances in plant proteomics I: Key techniques of proteome. Hereditas (遗传), 2006, 28(11): 1472–1486 (in Chinese with English abstract) [28] Garfin D. Two-dimensional gel electrophoresis: An overview. Trends Anal Chem, 2003, 22: 263–272 [29] Wu M-C(吴满成), Hu H-T(胡海涛), Yu Y-J(余有见), Sun N(孙娜), Yang L(杨玲). Extraction and improvement of two-dimensional electrophoresis analysis of proteins form berries of Elaeagnus umbellate Thunb. Plant Physiol Commun (植物生理学通讯), 2009, 45: 695–698 (in Chinese) |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[3] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[4] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[5] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[6] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[7] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[8] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[9] | YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341. |
[10] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[11] | WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping. Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(8): 1417-1426. |
[12] | ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530. |
[13] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[14] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[15] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
|