Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (08): 1342-1350.doi: 10.3724/SP.J.1006.2011.01342

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis of 18-C Unsaturated Fatty Acid Contents in Zero-Erucic Rapeseed (Brassica napus L.)

YANG Yan-Yu,YANG Sheng-Qiang,CHEN Zhe-Hong,GUAN Chun-Yun,CHEN She-Yuan,LIU Zhong-Song   

  1. Oilseed Crops Institute, Hunan Agricultural University, Changsha 410128, China
  • Received:2011-01-28 Revised:2011-04-26 Online:2011-08-12 Published:2011-06-13
  • Contact: 刘忠松, E-mail: zsliu48@sohu.com

Abstract: Rapeseed oil is a major edible oil source for human consumption. Its quality depends on its fatty acid composition. Among fatty acids, 18-C unsaturated fatty acids are most crucial. QTL mapping will pave a way for molecular breeding and cloning genes for fatty acid biosynthesis in rapeseed. In this study, the zero-erucic rapeseed parents HOP (high oleic) and Xiangyou 15 (low oleic) were used to construct a F2 population consisting of 189 individual plants. The construction of a genetic map containing 342 SSR markers and the mapping of QTLs for the 18-C unsaturated fatty acid contents were carried out. Two sampling methods, i.e., half-seed sampling from F2 single seeds and bulk-seed sampling from F2 individual plants (F3 seeds), were used to determine the fatty acid contents by gas chromatography. The correlations of the fatty acid contents between the two sampling methods as well as most of the correlations between these fatty acids were significant. Totally two major QTLs for oleic acid content were detected in the linkage groups (LG) of A5 and C5, which could explain 60-70% of the variance for oleic acid content. The superior one of the two QTLs was mapped in LG A5 and tightly linked to the FAD2 gene. The other one which located in LG C5 was a major QTL newly found for oleic acid content. The marker closest to this QTL was found to be homologous to the marker on the LG A5, implying the QTL on C5 was also associated with the FAD2 gene. Consistent effect of the two QTLs was confirmed using oleic acid contents determined by the two sampling methods. The QTLs for oleic acid content was found to be the ones for the linoleic acid content, which was consistent with the high significant correlation between the two fatty acids. Nevertheless, one more minor QTL for linoleic acid content with a low LOD value was shown on LG A4 using the bulk-seed method. For linolenic acid content, three major QTLs on LG A4, A5, and C4, respectively, were detected consistently using the determinations of the two sampling methods, totally explaining 72-80% of the variance for linolenic acid content. Furthermore, another QTL with a low LOD value, only accounting for 12.42% of variance was detected on LG A4 using the half-seed method.

Key words: Brassica napus, SSR, Fatty acid content, QTL mapping

[1]Chen J L, Beversdorf W D. Fatty acid inheritance in microspore-derived populations of spring rapeseed (Brassica napus L.). Theor Appl Genet, 1990, 80: 465-469
[2]Sasongko N, Möllers C. Toward increasing erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid. J Am Oil Chem Soc, 2005, 82: 445-449
[3]Zhao J, Dimov Z, Becker H, Ecke W, Möllers C. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed, 2008, 21: 115-125
[4]Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica, 1999, 105: 173-181
[5]Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-48
[6]Zhang J-F(张洁夫), Qi C-K(戚存扣), Pu H-M(浦惠明), Chen S(陈松), Chen F(陈锋), Gao J-Q(高建芹), Chen X-J(陈新军), Gu H(顾慧), Fu S-Z(傅寿仲). QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin (作物学报), 2008, 34: 54-60 (in Chinese with English abstract)
[7]Thormann C, Romero J, Mantet J, Osborn T. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93: 282-286
[8]Jagannath A, Sodhi Y S, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P K, Pradhan A K, Pental D. Eliminating expression of erucic acid-encoding loci allows the identification of 'hidden' QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet, 2011, DOI: 10.1007/s00122-010-1515-2
[9]Smooker A M, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet, 2011, DOI: 10.1007/s00122-010-1512-5
[10]Hu X, Sullivan-Gilbert M, Gupta M, Thompson S. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497-507
[11]Laga B, Seurinck J, Verhoye T, Lambert B. Molecular breeding for high oleic and low linolenic fatty acid composition in Brassica napus. Pflanzenschutz-Nachrichten Bayer, 2004, 54: 87-92
[12]Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000, 101: 897-901
[13]Tanhuanpää P, Vilkki J, Vihinen M. Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed, 1998, 4: 543-550
[14]Mikolajczyk K, Dabert M, Karlowski W M, Spasibionek S, Nowakowska J, Cegielska-Taras T, Bartkowiak-Broda I. Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breed, 2009, 129: 465-580
[15]Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs W, Lydiate D J, Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet, 1997, 94: 583-591
[16]Porebski S, Bailey L, Baum B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8-15
[17]Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009, 118: 1121-1131
[18]Lowe A, Moule C, Trick M, Edwards K. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108: 1103-1112
[19]Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514-1523
[20]Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-58
[21]Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173: 309-319
[22]Kim H, Choi S R, Bae J, Hong C P, Lee S Y, Hossain M J, Van Nguyen D, Jin M, Park B S, Bang J W, Bancroft I, Lim Y P. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics, 2009, 10: 432
[23]Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet, 2007, 115: 777-92
[24]Yu Q, Tong E, Skelton R L, Bowers J E, Jones M R, Murray J E, Hou S, Guan P, Acob R A, Luo M C, Moore P H, Alam M, Paterson A H, Ming R. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics, 2009, 10: 371
[25]Smith L B, King G J. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed, 2000, 6: 603-613
[26]Iniguez-Luy F, Voort A, Osborn T. Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet, 2008, 117:977-985
[27]Iniguez-Luy F L, Lukens L, Farnham M W, Amasino R M, Osborn T C. Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet, 2009, 120: 31-43
[28]Kaur S, Cogan N, Ye G, Baillie R, Hand M, Ling A, McGearey A, Kaur J, Hopkins C, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith K, Forster J, Spangenberg G. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet, 2009, 120: 71-83
[29]Tanhuanpää P K, Vilkki J P, Vilkki H J. Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet, 1996, 92: 952-956
[30]Javidfar F, Ripley V L, Roslinsky V, Zeinali H, Abdmishani C. Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus). Plant Breed, 2006, 125: 65-71
[31]Van Ooijen J W. JoinMap 4: Software for the calculation of genetic linkage maps in experimental populations. Kyazma B V. Wageningen, Netherlands, 2006, http://www.kyazma.nl/index.php/mc.JoinMap
[32]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University Raleigh, NC, 2010, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
[33]Coonrod D, Brick M, Byrne P, DeBonte L, Chen Z. Inheritance of long chain fatty acid content in rapeseed (Brassica napus L.). Euphytica, 2008, 164: 583-592
[34]Panjabi P, Jagannath A, Bisht N, Padmaja K, Sharma S, Gupta V, Pradhan A, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 2008, 9: 113
[35]Xiao G(肖钢), Zhang Z-Q(张振乾), Wu X-M(邬贤梦), Tan T-L(谭太龙), Guan C-Y(官春云). Cloning and characterization of six oleic acid desaturase pseudogenes. Acta Agron Sin (作物学报), 2010, 36(3): 435-441 (in Chinese with English abstract)
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[4] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[5] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[8] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[9] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[10] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[11] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[12] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[13] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[14] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[15] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!