Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (01): 129-139.doi: 10.3724/SP.J.1006.2012.00129
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
CHEN Bing1,2,3,WANG Ke-Ru1,2,LI Shao-Kun1,2,*,XIAO Chun-Hua1,2,SU Yi1,TANG Qiang1,CHEN Jiang-Lu1,JIN Xiu-Liang1,LÜ Yin-Liang1,DIAO Wan-Ying1,WANG Kai1
[1]Li G-Y(李国英). Study on strategy and technology of cotton primary diseases in Xinjiang. Xinjiang Farmland Sci & Technol (新疆农垦科技), 2000, (4): 23–25 (in Chinese with English abstract) [2]Song Q-P(宋庆平), Chen Q(陈谦), Chen H(陈红), Gou C-H(苟春红). Prospect on strategy and technology of protection and control diseases and insects in Xinjiang cotton fields. China Cotton (中国棉花), 2002, 29(12): 7–9 (in Chinese with English abstract) [3]Zhang H(张慧), Yang X-M(杨兴明), Ran W(冉炜), Xu Y-C(徐阳春), Shen Q-R(沈其荣). Screening of bacteria antagonistic against soil-borne cotton Verticillium wilt and their biological effects on the soil-cotton system. Acta Pedol Sin (土壤学报), 2008, 45(6): 1095–1101 (in Chinese with English abstract) [4]Humid Muhammad H. Hyperspectral crop reflectance data for characteristic and estimating fungal disease severity in wheat. Biosyst Eng, 2005, 91: 9–20 [5]Adams M L, Norvel W A, Philpot W D, Peverly J H. Toward the discrimination of manganese, zinc, copper, and iron deficiency in ‘bragg’ soybean using spectral detection methods. Agron J, 2000, 92, 268–274 [6]Tilling A K, O’Leary G J, Ferwerda J G, Jones S D, Glenn J F, Rodriguez D, Belford R. Remote sensing of nitrogen and water stress in wheat. Field Crops Res, 2007, 104: 77–85 [7]Yang B-J(杨邦杰), Wang M-X(王茂新), Pei Z-Y(裴志远). Monitoring freeze injury to winter wheat using remote sensing. Trans CSAE (农业工程学报), 2002, 18(2): 136–140 (in Chinese with English abstract) [8]Mirik M, Michels Jr G J, Kassymzhanova-Mirik S, Elliott N C. Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Comput Electron Agric, 2007, 57: 123–134 [9]Sun H(孙红), Li M-Z(李民赞), Zhou Z-Y(周志艳), Liu G(刘刚), Luo X-W(罗锡文). Monitoring of cnaphalocrocis medinalis guenee based on canopy reflectance. Spectroscopy Spectral Anal (光谱学与光谱分析), 2010, 30(4): 1080–1083 (in Chinese with English abstract) [10]Johnson D A, Richard Alldredge J, Hamm P B, Frazier B E. Aerial photography used for spatial pattern analysis of late blight infection in irrigated potato circles. Phytopathology, 2003, 93: 805–812 [11]Huang W J, Lamb D W, Niu Z, Zhang Y J, Liu Y J, Wang J H. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric, 2007, 8: 187–197 [12]Pu R L, Kelly M, Anderson G L, Gong P. Using CASI hyperspectral imagery to detect mortality and vegetation stress associated with a new hardwood forest disease. Photogramm Eng Rem Sens, 2008, 74: 65–75 [13]Wu D(吴迪), Feng L(冯雷), Zhang C-Q(张传清), He Y(何勇). Early detection of gray mold (Cinerea) on eggplant leaves based on vis/near infrared spectra. J Infrared Mill Waves (红外与毫米波学报), 2007, 26(4): 269–273 (in Chinese with English abstract) [14]Lathrop L D, Pennypacker S. Spectral classification of tomato disease severity levels. Photogramm Eng Rem Sens, 1980, 46: 1133–1138 [15]Malthus T J, Madeira A C. Height resolution spectradiometry: spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sens Environ, 1993, 45: 107–116 [16]Zhang H(张浩), Mao X-Q(毛雪琴), Zhang Z(张震), Zheng K-F(郑可锋), Du X-F(杜新法), Sun G-C(孙国昌). Hyperspectral remote sensing retriveral models of rice neck blasts severity. Res Agric Mod (农业现代化研究), 2009, 30(3): 369–372 (in Chinese with English abstract) [17]Franke J, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis Agric, 2007, 8: 161–172 [18]Liu L-Y(刘良云), Song X-Y(宋晓宇), Li C-J(李存军), Qi L(齐腊), Huang W-J(黄文江), Wang J-H(王纪华). Monitoring and evaluation of the diseases of and yield winter wheat from multi-temporal remotely-sensed data. Trans CSAE (农业工程学报), 2009, 25(1): 137–143 (in Chinese with English abstract) [19]Zhang H-M(张宏名), Li Q-J(李庆基), Wang J-S(王家圣). The mathod for detecting withered and Verticillium wilt of cotton by remote sensing. Plant Protect (植物保护), 1991, 17(6): 6–8 (in Chinese) [20]Jing X(竞霞), Huang W-J(黄文江), Ju C-Y(琚存勇), Xu X-G(徐新刚). Remote sensing monitoring severit level of cotton Verticillium wilt base on partial least squares regressive analysis. Trans CSAE (农业工程学报), 2010, 26(8): 229–235 (in Chinese with English abstract) [21]Liu J, Pattey E, Miller J R, McNairn H, Smith A M, Hu B.Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens Environ, 2010, 114: 1167–1177 [22]Chen B, Wang K R, Li S K, Xiao C H, Chen J L, Jin X L. Estimating severity level of cotton infected Verticillium wilt based on spectral indices of TM image. Sensor Lett, 2011, 9: 1157–1163 [23]Feng Z-C(冯志超). Effect of withered and Verticillium wilts of cotton in kuytun reclamation area on the yield and their control tactics. Xinjiang Agric Sci (新疆农业科学), 2004, 41(5): 367–369 (in Chinese with English abstract) [24]Qin P(秦鹏), Chen J-F(陈健飞). Comparison between color normalized and HSV sharpen in methods in extracting urban vegetation information from ASTER image. J Geoinformation Sci (地球信息科学学报), 2009, 11(3): 400–404 (in Chinese with English abstract) [25]Sivakumar M V K, Roy P S, Harmsen K, Saha S K. Satellite remote sensing and GIS applications in agricultural meteorology. World Meteorological Organization 7bis, Avenue de la Paix1211 Geneva 2, Switzerland.2004 [26]Chen B(陈兵), Li S-K(李少昆), Wang K-R(王克如), Bai J-H(柏军华), Sui X-Y(隋学艳), Bai C-Y(白彩云). Studies of remote sensing on monitoring crop diseases and pests. Cotton Sci (棉花学报), 2007, 19(1): 57–63 (in Chinese with English abstract) |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[9] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[10] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[11] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[12] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[13] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
[14] | ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437. |
[15] | HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. |
|