Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (06): 971-979.doi: 10.3724/SP.J.1006.2012.00971

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa

WANG Zhen-Yu1,2,3,CAI Hua1,BAI Xi1,JI Wei1,LI Yong1,WEI Zheng-Wei1,ZHU Yan-Ming1,*   

  1. 1 Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China; 2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China; 3 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-11-17 Revised:2012-02-22 Online:2012-06-12 Published:2012-04-06
  • Contact: 朱延明, E-mail: ymzhu2001@neau.edu.cn E-mail:wangzhenyu128@163.com

Abstract: Alfalfa (Medicago sativa L.) is one of the most important leguminous forage crops worldwide. Saline-alkaline stress significantly limits the productivity of alfalfa due to its adverse effects on growth, formation of nodules, and symbiotic nitrogen-fixation capacity, and resulting in the formation of reactive oxygen species (ROS). To protectplants from the toxicity ofreactiveoxygen, aerobic organisms are equipped with an array of defense mechanisms, including one based on glutathione S-transferases (GSTs). Glutathione S-transferases (GSTs) are ubiquitous enzymes that play a key role in stress tolerance and cellular detoxification. The GST gene GsGST19 isolated fromwild type soybean(Glycine soja) under saline-alkaline stress was transformed into alfalfa (Medicago sativa L.). Transgenic alfalfa plants showed 0.52–0.49 times higher levels of GST activity than wild type plants. Transgenic alfalfa grew well in the conditions of 100 mmol L–1 NaHCO3, while wild type plants exhibited discoloration and stunted growth, or even death. There were significantly changes in malondialdehyde content and relative membrane permeability caused by saline-alkaline stress in non-transgenic lines compared to transgenic lines (P<0.05). Moreover, compared with non-transgenic, transgenic alfalfa had higher levels of chlorophyll content and root activity under saline-alkali stress conditions. The results indicated that the gene GsGST19 could enhanceresistance to saline-alkaline in alfalfa.

Key words: Glutathione S-transferase, Transgenic alfalfa, Glycine soja, Saline-alkaline stress

[1]Geng H-Z(耿华珠). Alfalfa in China (中国苜蓿). Beijing: China Agriculture Press, 1995. pp 1–5 (in Chinese)

[2]Liu C-K(柳参奎). Primitive Color Illustrated Handbook of Plants of Salt-Alkali Soil in the Northeast of China (中国东北盐碱地植物原色图鉴). Herbin: Northeast Forest University Press in China, 2005. p 1 (in Chinese)

[3]Zhang H-N(张海娜), Li X-J(李小娟), Li C-D(李存东), Xiao K(肖凯). Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agron Sin (作物学报), 2008, 34(8): 1403–1408 (in Chinese with English abstract)

[4]Roxas V P, Smith R K, Jr., Allen1 E R, Allen1 R D. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988–991

[5]George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol, 2010, 167: 311–318

[6]Huang C, Guo T, Zheng S C, Feng Q L, Liang J H, Li L. Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Plant, 2009, 53: 183–187

[7]Zhao F Y, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Organ Cult, 2006, 86: 349–358

[8]Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 2010, 71: 338–350

[9]Ge Y, Li Y, Zhu Y M, Bai X, Lü D K, Guo D J, Ji W, Cai H. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 2010, 10: 153

[10]Ge Y, Li Y, Lv D K, Bai X, Ji W, Cai H, Wang A X, Zhu Y M. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genom, 2011, 11: 369–379

[11]Bao A K, Wang S M, Wu G Q, Xi J J, Zhang J L, Wang C M. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci, 2009, 176: 232–240

[12]Rao M V, Paliyath G., Ormrod D P. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol, 1997, 115: 137–149

[13]Mauch F, Dudlar R. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol, 1993, 102: 1193–1201

[14]Health R L, Packer L. Photoperoxidation in isolated chloroplast s1 I1 Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem Biophys, 1981, 125:1892–1981

[15]Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997, 251: 153–157

[16]Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc. Trans, 1983, 11: 591–592

[17]Zhong X H, Huang N R. Rice grain chalkiness is negatively correlated with root activity during grain filling. Rice Sci, 2005, 12: 192–196

[18]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol, 2002, 3: 3004.1–3004.10

[19]Yang X, Su W, Liu J P, Liu Y J, Zeng Q Y. Biochemical and physiological characterization of a tau class glutathione transferase from rice (Oryza sativa). Plant Physiol Biochem, 2009, 47: 1061–1068

[20]Lo Piero A R, Puglisi I, Petrone G. Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]. J Agric Food Chem, 2006, 54: 9227–9233

[21]Bianchi M W, Roux C, Vartanian N. Drought regulation of GST8 encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant, 2002, 116: 96–105

[22]DeRidder B P, Dixon D P, Beussman D J, Edwards R, Goldsbrough P B. Induction of glutathione S-transferases in Arabidopsis by herbicide safety. Plant Physiol, 2002, 130: 1497–1505

[23]Ji W, Zhu Y M, Li Y, Yang L, Zhao X W, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 2010, 32: 1173–1179

[24]Dixit P, Mukherjee P K, Ramachandran V, Eapen S. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PloS ONE, 2011, 6(1): e16360. 1371/journal.pone.0016360

[25]Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305–1319

[26]Diao G, Wang Y, Wang C, Yang C. Cloning and functional characterization of a novel glutathione S-transferase gene from Limonium bicolor. Plant Mol Biol Rep, 2011, 29: 77–87
[1] CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination [J]. Acta Agronomica Sinica, 2020, 46(10): 1591-1604.
[2] CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049.
[3] ZHU Ping-Hui**,CHEN Ran-Ran**,YU Yang,SONG Xue-Wei,LI Hui-Qing,DU Jian-Ying,LI Qiang,DING Xiao-Dong,ZHU Yan-Ming*. Cloning of Gene GsWRKY15 Related to Alkaline Stress and Alkaline Tolerance of Transgenic Plants [J]. Acta Agron Sin, 2017, 43(09): 1319-1327.
[4] CHEN Chen, SUN Xiao-Li, LIU Ai-Lin, DUAN-MU Hui-Zi, YU Yang, XIAO Jia-Lei, ZHU Yan-Ming. Cloning and Functional Analysis of Glycine soja Bicarbonate Stress Responsive Gene GsMIPS2 [J]. Acta Agron Sin, 2015, 41(09): 1343-1352.
[5] ZHAO Yang,ZHU Yan-Ming,BAI Xi,JI Wei,WU Jing,TANG Li-Li,CAI Hua. Over-expressing GsCBRLK/SCMRP from Glycine soja Enhances Alkaline Tolerance and Methionine Content in Transgenic Medicago sativa [J]. Acta Agron Sin, 2014, 40(03): 431-438.
[6] FAN Hu, WEN Zi-Xiang, WANG Chun-E, WANG Fang, XING Guang-Nan, ZHAO Tuan-Jie,GAI Jun-Yi. Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population [J]. Acta Agron Sin, 2013, 39(05): 775-788.
[7] WEI Zheng-Wei,ZHU Yan-Ming,HUA Ye,CAI Hua,JI Wei,BAI Xi,WANG Zhen-Yu,WEN Yi-Dong. Transgenic Alfalfa with GsPPCK1 and Its Alkaline Tolerance Analysis [J]. Acta Agron Sin, 2013, 39(01): 68-75.
[8] CAI Hua, ZHU Yan-Meng, LI Yong, BAI Ti, JI Wei, WANG Dong-Dong, SUN Xiao-Li. Isolation and Tolerance Analysis of GsNAC20 Gene Linked to Response to Stress in Glycine soja [J]. Acta Agron Sin, 2011, 37(08): 1351-1359.
[9] XIAO Xin-Hui, LI Xiang-Hua, LIU Xiang, ZHANG Ying, WANG Ke-Jing. Difference of Ion Accumulation in Wild Soybean (Glycine soja) under High Saline-alkali Stress [J]. Acta Agron Sin, 2011, 37(07): 1289-1300.
[10] ZHANG Yan-Min, ZHANG Hong-Mei, XIANG Jin-Yang, GUO Xiu-Lin, LIU Zi-Hui, LI Guo-Liang, CHEN Dao-Yi. Analysis of T-DNA Flanking Sequences and Event Specific Detection of Transgenic Alfalfa with Gene BADH [J]. Acta Agron Sin, 2011, 37(03): 397-404.
[11] WANG Xi, LI Yong, ZHU Yan-Ming, BAI Xi, CAI Hua, JI Wei. Cloning and Tolerance Analysis of GsANN Gene Related to Response on Stress in Glycine soja [J]. Acta Agron Sin, 2010, 36(10): 1666-1673.
[12] FAN Jin-Ping;BAI Xi;LI Yong;JI Wei;WANG Xi;CAI Hua;ZHU Yan-Ming. Cloning and Function Analysis of Gene SAMS from Glycine soja [J]. Acta Agron Sin, 2008, 34(09): 1581-1587.
[13] WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: II. Exploration of Elite Alleles [J]. Acta Agron Sin, 2008, 34(08): 1339-1349.
[14] WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: I. Population Structure and Associated Markers [J]. Acta Agron Sin, 2008, 34(07): 1169-1178.
[15] GAI Jun-Yi;XU Dong-He;GAO Zhong;Yoshiya Shimamoto Jun Abe;Hirofumi Fukushi;Shunji Kitajima. Studies on the Evolutionary Relationship among Eco-types of G.max and G.soja in China [J]. Acta Agron Sin, 2000, 26(05): 513-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!