Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (08): 1407-1415.doi: 10.3724/SP.J.1006.2012.01407

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of Quantitative Trait Loci Underlying Six Agronomic Traits in Flue-Cured Tobacco (Nicotiana tabacum L.)

TONG Zhi-Jun1,2,JIAO Fang-Chan2,WU Xing-Fu2,WANG Feng-Qing1,CHEN Xue-Jun2,LI Xu-Ying2,3,GAO Yu-Long2,ZHANG Yi-Han2,XIAO Bing-Guang2,*,WU Wei-Ren1,4,*   

  1. 1 Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China; 3 College of Agriculture & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; 4 College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China
  • Received:2012-02-07 Revised:2012-04-20 Online:2012-08-12 Published:2012-06-04

Abstract: Studies of genetic mapping of quantitative trait loci (QTLs) in tobacco have still been very limited up to date due to the difficulty of molecular marker development and genetic map construction in this species. In this study, with a doubled haploid (DH) population of flue-cured tobacco and a genetic map consisting of 611 SSR markers on 24 linkage groups (LGs) and spanning a total length of 1 882.1 cM constructed based on this population, QTL mapping was performed using the method of composite interval mapping for six agronomic traits related to leaf yield, including plant height (PH), stem girth (SG), internode length (IL), leaf number (LN), length of the largest waist leaf (LWL) and width of the largest waist leaf (WWL). A total of 69 QTLs were detected. Most of the QTLs had small effects, but there were four with relatively large effects, explaining 15–20% of the phenotypic variation in the DH population. The six traits were largely correlated with each other. Consistent with this, many small regions harboring two or more closely linked QTLs of different traits were found in the genome.

Key words: Flue-cured tobacco (Nicotiana tabacum L.), Quantitative trait locus (QTL), Gene

[1]Legg P D, Collins G B. Genetic parameters in a Ky 14 × Ky Ex 42 burley population of Nicotiana tabacum L. Theor Appl Genet, 1975, 45: 264–267

[2]White F H, Pandeya R S, Dirks V A. Correlation studies among and between agronomic, chemical, physical and smoke characteristics in flue-cured tobacco (Nicotiana tabaccum L.). Can J Plant Sci, 1979, 59:111–120

[3]Honarnejed R, Shoai-Deylami M. Gene effect, combining ability and correlation of characterstics in F2 populations of burley tobacco. J Sci Technol Agric Nat Resour, 2004, 8: 135–148

[4]Xiao B G, Zhu J, Lu X P, Bai Y F, Li Y P. Analysis on genetic contribution of agronomic traits to total sugar in flue-cured tobacco (Nicotiana tabacum L.). Field Crops Res, 2007, 102: 98–103

[5]Mohan M, Nair S, Bhagwat A, Krishna T G, Yano M, Bhatia C R, Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed, 1997, 3: 87–103

[6]Ren N, Timko M P. ALFP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559–571

[7]Rossi L, Bindler G, Pijnenburg H, Isaac P G, Giraud-Henri I, Mahe M, Orvain C, Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds, 2001, 14: 89–101

[8]Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51: 547–559

[9]Moon H S, Nicholson J S, Heineman A, Lion K, der Hoeven R V, Hayes A J, Lewis R S. Changes in genetic diversity of U.S. Flue-Cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009, 49: 498–506

[10]Moon H S, Nifong J M, Nicholson J S, Heineman A, Lion K, der Hoeven R V, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci, 2009, 49: 2149–2157

[11]Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root of tobacco. Theor Appl Genet, 1995, 91: 1184–1189

[12]Yi H Y, Rufty R C, Wernsman E A. Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis, 1998, 82: 1319–1322

[13]Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T. Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet, 1999, 262: 822–829

[14]Johnson E S, Wolff M F, Wernsmann E A. Marker assisted selection for resistance to black shank disease in tobacco. Plant Dis, 2002, 12: 1303–1309

[15]Julio E, Denoyes R B, Verrier J L, de Borne F D. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69–91

[16]Julio E, Verrier J L, de Borne F D. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006b,112: 335–346.

[17]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, der Hoeven R V, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230

[18]Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet, 2003, 106: 765–770

[19]Vontimitta V, Lewis R S. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beihart-1000. Mol Breed, 2012, 29: 89–98

[20]Vontimitta V, David A, Danehower, Steede T, Moon H S, Lewis R S. Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. Agric Food Chem, 2010, 58: 294–300

[21]Vontimitta V, Lewis R S. Growth chamber evaluation of a tobacco ‘Beinhart 1000’ × ‘Hicks’ mapping population for quantitative trait loci affecting resistance to multiple races of Phytophthora nicotianae. Crop Sci, 2012, 52: 91–98

[22]Milla S R, Levin J S, Lewis R S, Rufty R C. RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in tobacco. Crop Sci, 2005, 45: 2346–2354

[23]Lewis R S, Milla S R, Kernodle S P. Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet, 2007, 114: 841–854

[24]Cai C-C(蔡长春), Chai L-G(柴利广), Wang Y(王毅), Xu F-S(徐芳森), Zhang J-J(张俊杰), Lin G-P(林国平). Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agron Sin (作物学报), 2009, 35(9): 1646–1654 (in Chinese with English abstract)

[25]Xiao B-G(肖炳光), Lu X-P(卢秀萍), Jiao F-C(焦芳蝉), Li Y-P(李永平), Sun Y-H(孙玉合), Guo Z-K(郭兆奎). Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2008, 34(10): 1762–1769 (in Chinese with English absract)

[26]Chen X-J(陈学军), Peng S-Y(彭双玉), Luo J-R(罗建蓉), Yang Y-M(杨彦明), Xiao B-G(肖炳光). Culture of regenerated seedlings from anthers and construction of DH populations of six cross combinations of Nicotiana tabacum. J Plant Resour & Environ (植物资源与环境学报), 2011, 20(1): 65–68 (in Chinese with English abstract)

[27]Murry H G, Thomspon W F. Rapid isolation of weight DNA. Nucl Acids Res, 1980, 8: 4321–4322

[28]Xu S-B(许绍斌), Tao Y-F(陶玉芬), Yang Z-Q(杨昭庆), Chu J(褚嘉). A simple and rapid methods used for silver staining and gel preservation. Heredtas (遗传), 2002, 24(3): 335–336 (in Chinese wit English abstract)

[29]Van Ooijen J W. JoinMap 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B V, Wageningen

[30]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468

[31]Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142: 285–294

[32]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 14: 11–13

[33]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[3] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[4] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[5] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[6] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[7] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[8] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[9] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[10] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[11] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[12] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[13] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[14] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[15] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!