[1]Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactionsamong floral homeotic genes of Arabidopsis. Development, 1991, 112: 1–20
[2]Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31–37
[3]Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 2004, 14: 1935–1940
[4]Theissen G, Saedler H. Plant biology: Floral quartets. Nature, 2001, 409: 469–471
[5]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203–209
[6]Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1, DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718
[7]Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 2004, 131: 6083–6091
[8]Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G H, Hirano H Y. Functional diversification of the two C-class MADS-box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28
[9]Mandel M A, Brown C G, Savidge B, Yanofsky M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360: 273–277
[10]Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 1991, 65: 991–1002
[11]Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene agamous in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992, 71: 119–131
[12]Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789–801
[13]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[14]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325
[15]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)
[16]Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene RL10 (t) in rice (Oryza sativa L.). Genome, 2007, 50: 811–817
[17]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[18]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175
[19]Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs, Plant J, 2005, 43: 915–928
[20]Jin Y, Luo Q, Tong H N, Wang A J, Cheng Z J, Tang J F, Li D Y, Zhao X F, Li X B, Wan J M, Jiao Y L, Chu C C, Zhu L H. An at-hook gene is required for palea formation and floral organ number control in rice. Dev Biol, 2011, 359: 277–288
[21]Agrawal K G, Abe K, Yamazaki M, Miyao A, Hirochika A. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss of function mutants of the OsMADS1 gene. Plant Mol Biol, 2005, 59: 125–135
[22]Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006, 223: 882–890
[23]Wang K J, Tang D, Hong L L, Xu W Y, Huang J, Li M, Gu M H, Xue Y B, Cheng Z K. DEP and AFO regulate reproductive habit in rice. PloS Genet, 2010, 6: e1000818
[24]Yuan Z, Gao S, Xue D W, Luo D, Li L T, Ding S Y, Yao X, Wilson Z A, Qian Q, Zhang D B. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol, 2009, 149: 235–244
[25]Shinnosuke O, Mayumi K, Maiko S, Akio M, Hirohiko H, Eiji U, Yasuo N, Hitoshi Y. MOSAIC FLORAL ORGANS 1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell, 2009, 21: 3008–3025
[26]Sang X C, Li Y F, Luo Z K, Ren D Y, Fang L K, Wang N, Zhao F M, Ling Y H, Yang Z L, Liu Y S, He G H. CHIMERIC FLORAL ORGANS 1, encoding a Monocot-specific MADS-box protein, regulates floral organ identity in rice. Plant Physiol, 2012, 160: 788–807
[27]Zhang Y-Z(张玉烛), Zhang G-H(张桂和), Zhu G-C(朱国才), Deng Q-Y(邓启云), Zhan Q-C(詹庆才). Effects of overcast and raining on flowering, fertilizing and seed setting of early rice. Chin J Rice Sci (中国水稻科学), 1995, 9(3): 173–178 (in Chinese with English abstract)
[28]Wang Z(王忠), Gu Y-J(顾蕴洁), Yu H-L(于洪亮), Shi H-Y(石火英), Gao Y-Z(高煜珠). Studies on the cause of formation of deformed kernel of wild abortion type male sterile line in rice. Sci Agric Sin (中国农业科学), 1995, 28(6): 25–31 (in Chinese with English abstract) |