Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (06): 1030-1038.doi: 10.3724/SP.J.1006.2013.01030

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and Molecular Identification of Resistance to Powdery Mildew in Pea Germplasm

WANG Zhong-Yi1,BAO Shi-Ying2,DUAN Can-Xing1,ZONG Xu-Xiao1,ZHU Zhen-Dong1,*   

  1. 1 Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Grain Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
  • Received:2012-11-19 Revised:2013-01-15 Online:2013-06-12 Published:2013-03-22
  • Contact: 朱振东, E-mail: zhuzhendong@caas.cn, Tel: 010-82109609

Abstract:

Pea powdery mildew, caused by Erysiphe pisi, is one of the most important diseases in pea production. The utilization of resistant pea cultivars is the most economical and effective method for controlling the disease. In this study, Three hundred and ninety-six pea accessions were evaluated for resistance to two powdery mildew isolates from different geographical origins in seedling stage under controlling condition, and four SCAR makers closely linked to pea powdery mildew resistance gene er1 were used to genotype accessions with immunity or resistance. The results showed that 101 accessions were immune or resistant to powdery mildew, 59 (14.9%) and 60 (15.2%) accessions were immune to the Beijing isolate and Yunnan isolate, respectively, 54 (13.6%) accessions were immune to both the Beijing isolate and Yunnan isolate. In eighty-two accessions from China, only eight were immune to both of the two isolates. Thirteen marker genotypes were identified in 66 selected accessions with immunity or resistance through molecular genotyping, and the accessions from the same geographical origin contained different marker genotypes. Eight accessions from Yunnan Province of China shared seven marker genotypes. The above results indicated that pea germplasm with resistance to pea powdery mildew has effective and extensive genetic diversity in China.

Key words: Pisum sativum, Powdery Mildew, Resistance gene, Molecular identification

[1]Zong X-X(宗绪晓), Guan J-P(关建平), Wang H-H(王海飞), Ma Y(马钰). Population structure and genetic diversity of global pea (Pisum sativum L.) germplasm resources. Sci Agric Sin (中国农业科学), 2010, 43: 240–251 (in Chinese with English abstract)



[2]Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74–115



[3]Nisar M, Ghafoor A. Linkage of a RAPD marker with powdery mildew resistance er1 gene in Pisum sativum L. Russ J Genet, 2011, 47: 300–304



[4]Fondevilla S, Rubiales D. Powdery mildew control in pea: a review. Agron Sustainable Dev, 2012, 32: 401–409



[5]Ond?ej M, Dostálová R, Hýbl M, Odstr?ilová L, Tyller R, Trojan R. Utilization of afila types of pea (Pisum sativum L.) resistant to powdery mildew (Erysiphe pisi DC.) in the breeding programs. Plant Soil Environ, 2003, 49: 481–485



[6]Harland S C. Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948, 2: 263–269



[7]Heringa R J, van Norel A, Tazelaar M F. Resistance to powdery mildew (Erisyphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica, 1969, 18: 163–169



[8]Fondevilla S, Torres A M, Moreno M T, Rubiales D. Identi?cation of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci, 2007, 57: 181–184



[9]Timmerman G M, Frew T J, Weeden N F, Miller A L, Goulden D S. Linkage analysis of er1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C). Theor Appl Genet, 1994, 88: 1050–1055



[10]Katoch V, Sharma S, Pathania S, Banayal D K, Sharma S K, Rathour R. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed, 2010, 25: 229–237



[11]Wang X-M(王晓鸣), Zhu Z-D(朱振东), Duan C-X(段灿星), Zong X-X(宗绪晓). Identification and control technology of diseases and pests on broad bean and Pea (蚕豆豌豆病虫害鉴别与控制技术). Beijing: China Agricultural Scientech Press, 2007. pp 54–100 (in Chinese)



[12]Peng H-X(彭化贤), Yao G(姚革), Jia R-L(贾瑞林), Liang H-Y(梁红云). Studies on resistance to powdery mildew in pea. J Southwest Agric Univ (西南农业大学学报), 1991, 13(4): 384–386 (in Chinese with English abstract)



[13]Vaid A, Tyagi P D. Genetics of powdery mildew resistance in pea. Euphytica, 1997, 96: 203–206



[14]Rana J C, Banyal D K, Sharma K D, Sharma M K, Gupta S K, Yadav S K. Screening of pea germplasm for resistance to powdery mildew. Euphytica, 2013, 189: 271–282



[15]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018



[16]Tiwari K R., Penner G A, Warkentin T D. Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998, 41: 440–444



[17]Srivastava R K, Mishra S K, Singh A K, Mohapatra T. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene er1 in pea (Pisum sativum L.). Euphytica, 2012, 186: 855–866



[18]Liu A-Y(刘爱媛). Identification method of resistance of pea powdery mildew using detached leaves. Acta Phytophyl Sin (植物保护学报), 2002, 29(2): 119–123 (in Chinese with English abstract)



[19]Xue A G, Warkentin T D. Reactions of field pea varieties to three isolates of Uromyces fabae. Can J Plant Sci, 2002, 82: 253–255



[20]Tiwari K R, Penner G A, Warkentin T D. Inheritance of powdery mildew resistance in pea. Can J Plant Sci, 1997, 77: 307–310



[21]Tiwari K R, Penner G A, Warkentin T D, Rashid K Y. Pathogenic variation in Erysiphe pisi, the causal organism of powdery mildew of pea. Can J Plant Pathol, 1997, 19: 267–271



[22]Banyal D K, Tyagi P D. Resistance of pea genotypes in relation to sporulation by Erysiphe pisi. Crop Prot, 1997, 16: 51–55



[23]Ghafoor A, McPhee K. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012, 186: 593–607



[24]Liu S M, O’Brien L, Moore S G. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Austr J Exp Agric, 2003, 43: 373–378



[25]Vaid A, Tyagi P D. Genetics of powdery mildew resistance in pea. Euphytica, 1997, 96: 203–206



[26]Sharma B. The Pisum genus has only one recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 22–27



[27]Sharma B. Present status of the powdery mildew resistance gene Er in pea (Pisum sativum). Proceedings of the 4th International Iran and Russia Conference “Agriculture and Natural Resources”, September 8-10, 2004, Shahrekord University, Iran, pp 376–381



[28]Sharma B. Identification of recessive er gene for powdery mildew resistance in a landrace of Pisum sativum. Pisum Genet, 2003, 35: 30–31



[29]Sharma B, Yadav Y. Pisum fulvum carries a recessive gene for powdery mildew resistance. Pisum Genet, 2003, 35: 31



[30]Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R. Durable broadspectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol, 2011, 12: 866–878



[31]Pavan S, Schiavulli A, Appiano M, Marcotrigiano A R, Cillo F, Visser R G F, Bai Y, Lotti C, Ricciardi L. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet, 2011, 123: 1425–1431



[32]Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa M T, Farinhó M, Leitão J M. Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica, 2010, 171: 327–335



[33]Pereira G, Leitão J. Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica, 2010, 171: 345–354



[34]Fondevilla S, Carver T L W, Moreno M T, Rubiales D. Macroscopic and histological characterization of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol, 2006, 115: 309–321



[35]Ambrose M J. Screening for field resistance to powdery mildew (Eyrsiphe polygoni D.C.) in the JI Pisum collection. Pisum Genet, 2009, 41: 40–43



[36]Dirlewanger E, Isaac P G, Ranade S, Belajouza M, Cousin R, de Vienne D. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet, 1994, 88: 17–27



[37]Janila P, Sharma B. RAPD and SCAR markers for powdery mildew resistance gene er1 in pea. Plant Breed, 2004, 12: 271–274



[38]Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005, 142: 86–91



[39]Tonguc M, Weeden N F. Identification and mapping of molecular markers linked to er1 gene in pea. Plant Mol Biol Biotechnol, 2010, 1: 1–5



[40]Zong X-X(宗绪晓), Guan J-P(关建平), Wang S-M(王述民), Liu Q-C(刘庆昌). Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin (作物学报), 2008, 34(8): 1330−1338 (in Chinese with English abstract)
[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[3] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[4] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[5] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[6] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[7] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[8] WEN Jing, SHEN Yan-Qi, HAN Si-Ping, XING Yue-Xian, ZHANG Ye, WANG Zi-Yu, LI Shi-Jie, YANG Xiao-Hong, HAO Dong-Yun, ZHANG Yan. Exploration of specific gene(s) for ear rot resistance to Fusarium verticilloides in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1303-1311.
[9] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[10] TIAN Hong-Li, YANG Yang, WANG Lu, WANG Rui, YI Hong-Mei, XU Li-Wen, ZHANG Yun-Long, GE Jian-Rong, WANG Feng-Ge, ZHAO Jiu-Ran. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties [J]. Acta Agronomica Sinica, 2020, 46(7): 1006-1015.
[11] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[12] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[13] Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI. Cloning and analysis of candidate gene resistant to SC3 in soybean [J]. Acta Agronomica Sinica, 2019, 45(12): 1822-1831.
[14] ZHANG An-Ning,LIU Yi,WANG Fei-Ming,XIE Yue-Wen,KONG De-Yan,NIE Yuan-Yuan,ZHANG Fen-Yun,BI Jun-Guo,YU Xin-Qiao,LIU Guo-Lan,LUO Li-Jun. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line [J]. Acta Agronomica Sinica, 2019, 45(11): 1764-1769.
[15] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!