Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (05): 934-941.doi: 10.3724/SP.J.1006.2014.00934
• RESEARCH NOTES • Previous Articles Next Articles
HEN Na1,PAN Li-Juan1,CHI Xiao-Yuan1,2,CHEN Ming-Na1,WANG Tong1,WANG Mian1,YANG Zhen1,HU Dong-Qing3,WANG Dao-Yuan4,YU Shan-Lin1,*
[1] Jang J C, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5–19[2] Loreti E, Bellis L, Alpi A, Perata P. Why and how do plant cells sense sugars? Ann Bot, 2001, 88: 803–812[3] Folgado R, Sergeant K, Renaut J, Swennen R, Hausman J F, Panis B. Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. J Proteomics, 2014, 98:99–111[4] Ramon M, Rolland F, Sheen J. Sugar sensing and signaling. Arabidopsis Book, 2008, 6: e0117[5] Cho Y H, Yoo S D. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet, 2011, 7: e1001263[6] Yamada S, Komori T, Hashimoto A, Kuwata S, Imaseki H, Kubo T. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci, 2000, 154: 61–69[7] Jiang Y, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58: 3591–3607[8] Ndimba B K, Chivasa S, Simon W J, Slabas A R. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2005, 5: 4185–4196[9] Provart N J, Gil P, Chen W, Han B, Chang H S, Wang X, Zhu T. Gene expressionphenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol, 2003, 132: 893–906[10] Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65–74[11]Fan W, Zhang Z L, Zhang Y L. Cloning and molecular characterization of fructose-1,6 -bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep, 2009, 28: 975–984[12] Chen M, Mishra S, Heckathorn S A, Frantz J M, Krause C. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J Plant Physiol, 2014, 171:235–242[13] Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol, 2004, 7: 235–246[14] Hoekstra F A, Crowe L M, Crowe J H. Differential desiccation sensitivity of corn and pennisetum pollen linked to their sucrose contents. Plant Cell Environ, 1989, 12: 83–91[15] Smeekens S, Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol, 1997, 115: 7–13[16] Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675–709[17] Hanson H D, Hitz W D. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol, 1982, 33: 163–203[18] Wan X, Mo A, Liu S,Yang L, Li L. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress- responsive gene expression. J Biosci Bioeng, 2011, 111: 478–484[19] Wang T, Chen X, Zhu F, Li H, Li L, Yang Q, Chi X, Yu S, Liang X. Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One, 2013, 8: e61722[20] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 16–20Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 16–20 (in Chinese)[21] 胡晓辉, 孙令强, 苗华荣, 石运庆, 陈静. 不同盐浓度对花生品种耐盐性鉴定指标的影响. 山东农业科学, 2011, 11: 35–37Hu X H, Sun L Q, Miao H R, Shi Y Q, Chen J. Effects of different NaCl concentrations on indicators for evaluating salt tolerance of peanut varieties. Shandong Agric Sci, 2011, 11: 35–37 (in Chinese with English abstract)[22] Tabei Y, Okada K, Horii E, Mitsui M, Nagashima Y, Sakai T, Yoshida T, Kamiya A, Fujiwara S, Tsuzuki M. Two regulatory networks mediated by light and glucose involved in glycolytic gene expression in cyanobacteria. Plant Cell Physiol, 2012, 53: 1720–1727[23] Rutter W J. Evolution of Aldolase. Fed Proc, 1964, 23: 1248–1257[24] Lebherz H G, Leadbetter M M, Bradshaw R A. Isolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose diphosphate aldolase. J Biol Chem, 1984, 259: 1011–1017[25] Pelzer-Reith B, Penger A, Schnarrenberger C. Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Mol Biol, 1993, 21: 331–340[26] Tsutsumi K, Kagaya Y, Hidaka S, Suzuki J, Tokairin Y, Hirai T, Hu D L, Ishikawa K, Ejiri S. Structural analysis of the chloroplastic and cytoplasmic aldolase-encoding genes implicated the occurrence of multiple loci in rice. Gene, 1994, 141: 215–220[27] Kelley P M, Freeling M. Anaerobic expression of maize fructose-1,6-diphosphate aldolase. J Biol Chem, 1984, 259: 14180–14183[28] Russell D A, Wong D M, Sachs M M. The anaerobic response of soybean. Plant Physiol, 1990, 92: 401–407[29] Mujer C V, Rumpho M E, Lin J J, Kennedy R A. Constitutive and inducible aerobic and anaerobic stress proteins in the echinochloa complex and rice. Plant Physiol, 1993, 101: 217–226[30] Andrews D L, MacAlpine D M, Johnson J R, Kelley P M, Cobb B G, Drew M C. Differential induction of mRNAs for the glycolytic and ethanolic fermentative pathways by hypoxia and anoxia in maize seedlings. Plant Physiol, 1994, 106: 1575–1582[31] Umeda M, Uchimiya H. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol, 1994, 106: 1015–1022[32] Kagaya Y, Nakamura H, Hidaka S, Ejiri S, Tsutsumi K. The promoter from the rice nuclear gene encoding chloroplast aldolase confers mesophyll-specific and light-regulated expression in transgenic tobacco. Mol Gen Genet, 1995, 248: 668–674[33] Kamal A H, Cho K, Kim D E, Uozumi N, Chung K Y, Lee S Y, Choi J S, Cho S W, Shin C S, Woo S H. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep, 2012, 39: 9059–9074[34] Sarry J E, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet J B, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006, 6: 2180–2198[35] 张晓宁, 王昊, 曲志才, 陈火英, 叶鸣明, 沈大棱. NaCl诱导表达的盐藻果糖-1,6-二磷酸醛缩酶基因克隆及原核表达. 复旦学报, 2002, 41: 593–595Zhang X N, Wang H, Qu Z C, Chen H Y, Ye M M, Shen D L. Cloning and prokaryotic expression of the fructose-1,6-diphosphate aldolase full-length cDNA of Dunaliella salina induced by NaCl. J Fudan Univ, 2002, 41: 593–595 (in Chinese with English abstract)[36] Purev M, Kim M K, Samdan N, Yang D C. Isolation of an novel fructose-1,6-bisphosphat aldolase gene from Codonopsis lanceolata and analysis of the response. Mol Biol, 2008, 42: 206–213[37] Zhang X N, Qu Z C, Wan Y Z, Zhang H W, Shen D L. Application of suppression subtractive hyhridization (SSH) to cloning differentially expressed cDNA in Dunaliella salina (Chlorophyta) under hyperosmotic shock. Plant Mol Biol Rep, 2002, 20: 49–57[38] Xu Z Y, Kim D H, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep, 2013, 32: 807–813[39] Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol, 2006, 141: 910–923[40] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78 |
[1] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[2] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[3] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[4] | YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634. |
[5] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[6] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[7] | HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291. |
[8] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[9] | WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679. |
[10] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[11] | GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723. |
[12] | ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. |
[13] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[14] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[15] | ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490. |
|