Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (05): 683-691.doi: 10.3724/SP.J.1006.2015.00683

Previous Articles     Next Articles

Identification and Morphological Analysis of a Rice Chromosome Segment Substitution Line Carrying a Major Effect Gene for Late Heading Date and Mapping of Ehd4-2

XIANG Jia, LI Yan, FAN Ya-Wei, XU Jun-Hong, ZHENG Li-Yuan, HE Guang-Hua, YANG Zheng-Lin, WANG Nan, and ZHAO Fang-Ming*   

  1. Rice Research Institute, Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716?, China
  • Received:2014-11-20 Revised:2015-03-19 Online:2015-05-12 Published:2015-03-30

Abstract:

Heading date is an important agronomic trait deciding planting area and seasonal adaptability of rice varieties. Identification of genes for heading date is important for rice production. In this study, a novel chromosome segment substitution line (CSSL) named Z315, carrying a single gene for late heading date, was identified by advanced backcrosses between the recipient Nipponbare and donor Xihui 18 and SSR marker-assisted selection. Z315 carried five substitution segments from Xihui 18. They were distributed on chromosomes 1, 3, 6, and 7. The average length of these substitution segments is 7.39 Mb. The chlorophyll content, plant height, panicle length, length of the 1st internode, length of the 2nd and 3rd upper leaf, number of efficient panicles, number of spikilets per panicle and number of grains per panicle in Z315 were significantly higher than those in Nipponbare, suggesting that QTLs (quantitative trait locus) for these traits might be carried on the chromosome substitution segments. Furthermore, F1 and F2 populations from cross of Nipponbare and Z315 were used for genetic analysis and gene mapping for the late heading date. Genetic analysis showed that the late heading date phenotype was controlled by a single recessive nuclear gene, which was mapped between SSR markers RM14283 and RM6349 on chromosome 3, with a physical distance of 233 kb. By gene prediction and candidate gene sequencing, a gene (LOC_Os03g02160) related to heading date was found existing differences between Nipponbare and Z315. The gene encoded zinc finger protein, which might be an allele of Ehd4, named Ehd4-2. The results in the paper have important applications for further dissection of other QTLs in Z315 and breeding for gene pyramiding because chromosome segment substitution lines have the same genetic background besides substitution segments compared with the recipient parent.

Key words: Heading date, Chromosome segment substitution lines, More panicles, More grains, High content of chlorophyll

[1]Khush G S. Productivity improvements in rice. Nutr Rev, 2003, 61: 8114–8116



[2]Khush G S. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc, 2001, 60: 15–26



[3]Du M M, Wang C. Progress on mapping of quantitative trait loci in crops. J Northeast Agric Univ, 2008, 15: 63–67



[4]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111



[5]魏祥进, 徐俊峰, 江玲, 王洪俊, 周振玲, 翟虎渠, 万建民. 我国水稻主栽品种抽穗期多样性的遗传分析. 作物学报, 2012, 38: 10–22



Wei X J, Xu J F, Jiang L, Wang H J, Zhou Z L, Zhai H Q, Wan J M. Genetic analysis for the diversity of heading date of cultivated rice in China. Acta Agron Sin, 2012, 38: 10–22 (in Chinese with English abstract)



[6]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473–2484



[7]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885–891



[8]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922–7927



[9]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition. Plant Cell Physiol, 2002, 43: 1096–1105



[10]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18: 926–936



[11]Matsubara K, Yamanouchi U, Wang Z X, Minobe Y, Izawa T, Yano M. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol, 2008, 148: 1425–1435



[12]Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang Z X, Minobe Y, Yano M. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J, 2011, 66: 603–612



[13]Gao H, Zheng X M, Fei G L, Chen J, Jin M N, Ren Y L, Wu W X, Zhou K N, Sheng P K, Zhou F, Jiang L, Wang J, Zhang X, Guo X P, Wang J L, Cheng Z J, Wu C Y, Wang H Y, Wan J M. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLOS Genet, 2013, 9: e1003281



[14]Wu W X, Zheng X M, Lu G W, Zhong Z Z, Gao H, Chen L P, Wu C Y, Wang H J, Wang Q, Zhou K N, Wang J L, Wu F Q, Zhang X, Gu X P, Cheng Z J, Lei C L, Lin Q B, Jiang L, Wang H Y, Ge S, Wan J M. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA, 2013, 110: 2775–2780



[15]Li J, Chu H W, Zhang Y H, Mou T M, Wu C Y, Zhang Q F, Xu J. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLOS ONE, 2012, 7: e34231



[16]Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 2009, 136: 3443–3450



[17]Kim S L, Lee S, Kim H J, Nam H G, An G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol, 2007, 145: 1484–1494



[18]Lee S, Kim J, Han J J, Han M J, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004, 38: 754–764



[19]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767



[20]Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758



[21]Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xin Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319–330



[22]Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J, 2013, 76: 36–46



[23]Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol, 2012, 53: 709–716



[24]Yuan Q B, Saito H, Okumoto Y, Inoue H, Nishida H, Tsukiyama T, Teraishi M, Tanisaka T. Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theor Appl Genet, 2009, 119: 675–684



[25]徐华山, 孙永健, 周红菊, 余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007, 33: 979–986



Xu H S, Sun Y J, Zhou H J, Yu S B. Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agron Sin, 2007, 33: 979–986 (in Chinese with English abstract)



[26]Ye G, Smith K F. Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. J Plant Breed, 2008, 2: 1–10



[27]Gur A, Zamir D. Natural variation can lift yield barriers in plant breeding. PLOS Biol, 2004, 2: 1610–1615



[28]曾瑞珍, 施军琼, 黄朝锋, 张泽民, 丁效华, 李文涛, 张桂权. 籼稻背景的单片段代换系群体的构建. 作物学报, 2006, 32: 88–95



Zeng R Z, Shi J Q, Huang C F, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a series of single segment substitution lines in indica background of rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 88–95 (in Chinese with English abstract)



[29]罗继景, 黄巍, 朱瑞良, 林鸿宣. 栽培稻抗旱性相关性状QTL的定位. 植物生理学通讯, 2005, 41: 260–268



Luo J J, Huang W, Zhu R L, Lin H X. QTL mapping of drought-resistance of cultivated rice. Plant Physiol Commun, 2005, 41: 260–268 (in Chinese with English abstract)



[30]Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers. Acta Bot Sin, 2002, 44: 463–467



[31]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127: 181–197



[32]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 48: 350–382



[33]McCouch S R, Kochert G, Yu Z H. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76: 148–159 



[34]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism in rice (Oryza sativa L). Mol Genet Genomics, 1996, 259: 597–607



[35]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707



Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple grain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)



[36]郎有忠, 窦永秀, 王美娥, 张祖建, 朱庆森. 水稻生育期对籽粒产量及品质的影响. 作物学报, 2012, 38: 528–534



    Lang Y Z, Dou Y X, Wang M E, Zhang Z J, Zhu Q S. Effects of growth duration on grain yield and quality in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 528–534 (in Chinese with English abstract)



[37]Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135: 767–774



[38]Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol, 2011, 52: 1083–1094



[39]Hayama R, Izawa T, Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol, 2002, 43: 494–504



[40]Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T. The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol, 2010, 152: 808–820 



[41]胡文明, 阚海华, 王伟, 徐辰武. 等位基因功能差异的统计遗传学分析及应用. 作物学报, 2014, 40: 72–79



Hu W M, Kan H H, Wang W, Xu C W. Statistical genetics approach for functional difference identification of allelic variations and its application. Acta Agron Sin, 2014, 40: 72–79 (in Chinese with English abstract)



[42]姚国新, 李金杰, 张强, 胡广隆, 陈超, 汤波, 张洪亮, 李自超. 利用4个姊妹近等基因群体定位水稻粒重和粒形QTL. 作物学报, 2010, 36: 1310–1317



Yao G X, Li J J, Zhang Q, Hu G L, Chen C, Tang B, Zhang H L, Li Z C. QTLs for grain weight and grain shape using 4NILs. Acta Agron Sin, 2010, 36: 1310–1317 (in Chinese with English abstract)

[1] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[2] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[3] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[4] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[5] Lhundrupnamgyal,Hui-Hui LI,Gang-Gang GUO, Chemiwangmo,Li-Yun GAO,Ya-Wei TANG, Nyematashi, Dawadondrup, Dolkar. Growth habit identification and diversity and stability analysis of heading date in Tibetan barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1796-1805.
[6] Hai-Xin LONG,Hai-Yang QIU,UZAIR Muhammad,Jing-Jing FANG,Jin-Feng ZHAO,Xue-Yong LI. Phenotypic Analysis and Gene Mapping of the Rice Narrow-leaf Mutant nal20 [J]. Acta Agronomica Sinica, 2018, 44(9): 1301-1310.
[7] Ji-Chi DONG,Jing YANG,Tao GUO,Li-Kai CHEN,Zhi-Qiang CHEN,Hui WANG. QTL Mapping for Heading Date in Rice Using High-density Bin Map [J]. Acta Agronomica Sinica, 2018, 44(6): 938-946.
[8] Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484.
[9] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
[10] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
[11] SHE Dong, LIU Qiang-Ming, LI Da-Lu, LIANG Yin-Feng, LIU Er-Bao,DANG Xiao-Jing,HONG De-Lin. QTL Mapping of Seven Panicle Traits in Rice (Oryza sativa L.) Using Chromosome Segment [J]. Acta Agron Sin, 2017, 43(05): 658-668.
[12] PENG Qian,XUE Ya-Dong,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua. Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize [J]. Acta Agron Sin, 2016, 42(04): 482-491.
[13] LIU Xin-Yan,ZHU Kong-Zhi,ZHANG Chang-Quan,HONG Ran,SUN Peng,TANG Su-Zhu,GU Ming-Hong,LIU Qiao-Quan. Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background [J]. Acta Agron Sin, 2014, 40(10): 1740-1747.
[14] CHEN Yu-Yu,ZHU Yu-Jun,ZHANG Hong-Wei,WANG Lin-Lin,FAN Ye-Yang,ZHUANG Jie-Yun. Validation and Dissection of Minor QTL qTGW1.2 for Thousand-Grain Weight in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2014, 40(05): 761-768.
[15] ZHAO Dong-Sheng,ZHANG Chang-Quan,GU Ming-Hong,LIU Qiao-Quan. Genetic and Expression Analyses of Ef7-l, a Novel Ef7 Allele, in Rice [J]. Acta Agron Sin, 2013, 39(10): 1799-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!