Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (04): 549-557.doi: 10.3724/SP.J.1006.2017.00549
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
GAO Lin1,2,YANG Gui-Jun1,*,LI Chang-Chun3,FENG Hai-Kuan1,XU Bo 1,WANG Lei1,3,DONG Jin-Hui1,3,FU Kui3
[1] Baret F, Jacquemoud S, Guyot G, Leprieur C. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens Environ, 1992, 41: 133–142 [2] Aparicio N, Villegas D, Araus J L, Casadesús J, Royo C. Relationship between growth traits and spectral vegetation indices in durum wheat. Crop Sci, 2002, 42: 1547–1555 [3] Coyne P I, Aiken R M, Maas S J, Lamm F R. Evaluating yield tracker forecasts for maize in western Kansas. Agron J, 2009, 101: 671–680 [4] De Souza N. Machines learn phenotypes. Nat Methods, 2013, 10: 38 [5] 王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法. 北京: 国防工业出版社, 2006 Wang H W, Wu Z B, Meng J. Partial least squares regression-linear and nonlinear methods. Beijing: National Defense Industry Press, 2006 (in Chinese) [6] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542–553 [7] Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur J Agron, 2006, 24: 349–356 [8] Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C, Corsi F, Cho M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J Photogrammetry &Remote Sens, 2008, 63: 409–426 [9] 李小文, 高峰, 王锦地, 朱启疆. 遥感反演中参数的不确定性与敏感性矩阵. 遥感学报, 1997, 1(1): 5–14 Li X W, Gao F, Wang J D, Zhu Q J. Uncertainty and sensitivity matrix of parameters in inversion of physical BRDF model. J Remote Sens, 1997, 1(1): 5–14 (in Chinese with English abstract) [10] Li X C, Zhang Y J, Bao Y S, Luo J H, Jin X L, Xu X G, Song X Y, Yang G G. Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sens, 2014, 6: 6221–6241 [11] 高林, 李长春, 王宝山, 杨贵军, 王磊, 付奎. 基于多源遥感数据的大豆叶面积指数估测精度对比. 应用生态学报, 2016, 27: 191–200 Gao L, Li C C, Wang B S, Yang G G, Wang L, Fu K. Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data. Chin J Appl Ecol, 2016, 27: 191–200 (in Chinese with English abstract) [12] Bareth G, Aasen H, Bendig J, Gnyp M L, Bolten A, Jung A, Michels R, Soukkam?ki J. Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: spectral comparison with portable spectroradiometer measurements. Photogrammetrie-Fernerkundung-Geoinf, 2015, 2015: 69–79 [13] Aasen H, Burkart A, Bolten A, Bareth G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J Photogrammetry & Remote Sens, 2015, 108: 245–259 [14] Lucieer A, Malenovsky Z, Veness T, Wallace L. HyperUAS: imaging spectroscopy from a multirotor unmanned aircraft system. J Field Robot, 2014, 31: 571–590 [15] Turner D, Lucieer A, Wallace L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans Geosci & Remote Sens, 2014, 52: 2738–2745 [16] Pe?uelas J, Isla R, Filella I, Araus J L. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci, 1997, 37: 198–202 [17] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 1996, 55: 95–107 [18] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156–172 [19] Qi J, Chehbouni A, Huete A R, Kerr Y H, Sorooshian S. A modified soil adjusted vegetation index. Remote Sens Environ, 1994, 48: 119–126 [20] Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337–352 [21] Dawson T P, Curran P J. Technical note a new technique for interpolating the reflectance red edge position. Int J Remote Sens, 1998, 19: 2133–2139 [22] 冯伟, 朱艳, 姚霞, 田永超, 郭天财, 曹卫星. 利用红边特征参数监测小麦叶片氮素积累状况. 农业工程学报, 2009, 25(11): 194–201 Feng W, Zhu Y, Yao X, Tian Y C, Guo T C, Cao W X. Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters. Trans CSAE, 2009, 25(11): 194–201 (in Chinese with English abstract) [23] Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int J Remote Sens, 1994, 15: 1459–1470 [24] 田明璐, 班松涛, 常庆瑞, 由明明, 罗丹, 王力, 王烁. 基于低空无人机成像光谱仪影像估算棉花叶面积指数. 农业工程学报, 2016, 32(21): 102–108 Tian M L, Ban S T, Chang Q R, You M M, Luo D, Wang L, Wang S. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index. Trans CSAE, 2016, 32(21): 102–108 [25] Stagakis S, Markos N, Sykioti O, Kyparissis A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: an application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens Environ, 2010, 114: 977–994 [26] Gonsamo A. Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices. Int J Remote Sens, 2011, 32: 2069–2080 [27] Lee K-S, Cohen W B, Kennedy R E, Maiersperger T K, Gower S T. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens Environ, 2004, 91: 508–520 [28] Yu K, Li F, Gnyp M L, Miao Y X, Bareth G, Chen X P. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J Photogrammetry & Remote Sens, 2013, 78: 102–115 [29] Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfil D J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens Environ, 2011, 115: 2141–2151 |
[1] | LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng. Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data [J]. Acta Agronomica Sinica, 2021, 47(7): 1342-1350. |
[2] | WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249. |
[3] | QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*. Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean [J]. Acta Agron Sin, 2015, 41(07): 1073-1085. |
[4] | FENG Wei,WANG Xiao-Yu,SONG Xiao,HE Li,WANG Yong-Hua,GUO Tian-Cai. Estimation of Severity Level of Wheat Powdery Mildew Based on Canopy Spectral Reflectance [J]. Acta Agron Sin, 2013, 39(08): 1469-1477. |
[5] | WU Qiong,QI Bo,ZHAO Tuan-Jie,YAO Xin-Feng,ZHU Yan,GAI Jun-Yi. A Tentative Study on Utilization of Canopy Hyperspectral Reflectance to Esti-mate Canopy Growth and Seed Yield in Soybean [J]. Acta Agron Sin, 2013, 39(02): 309-318. |
[6] | BAI Jun-Hua;LI Shao-Kun;WANG Ke-Ru;SHUI Xue-Yan;CHEN Bing. Estimation Models of Cotton Aboveground Fresh Biomass Based on Field Hyperspectral Remote Sensing [J]. Acta Agron Sin, 2007, 33(02): 311-316. |
|