The treatments of optimum fertilization (OPT:N 180, P 135, K 135 kg ha–1), OPT-N, OPT-P, OPT-K, OPT-1/3N, OPT +1/3N, OPT-1/3P, OPT +1/3P, OPT-1/3K, and CK were designed according to soil condition and uptake characteristics of nitrogen, phosphorus and potassium of potato/soybean relay-cropping system in Northwest irrigation districts. A field experiment was conducted in two consecutive seasons (from 2012 to 2013) to verify the yield response to balanced fertilization. The relay-cropping potato yield of OPT was significantly higher than that of OPT-N, OPT-P, and OPT-K, with obvious difference of 11 653.86 kg ha–1 between OPT and OPT-N, the relay-cropping soybean yield of OPT was significantly higher than that of OPT-N, OPT-P, and OPT-K, with obvious difference of 751.55 kg ha–1 between OPT and OPT-P. Therefore, nitrogen and phosphorus were the first limiting factors in relay-cropping potato and soybean production. Under certain phosphorus and potassium fertilizer, the relay-cropping potato yield increased with increasing N application, reaching the highest of 50 231.85 kg ha–1 under 240 kg ha–1 treatment (OPT+1/3N), but there was no significant difference between OPT and OPT+1/3N. And the relay-cropping soybean yield increased firstly and decreased then with increasing nitrogen fertilizer application, with the highest yield of 3373.55 kg ha–1 under 180 kg ha–1 treatment (OPT), there was no significant difference between OPT, OPT-1/3N, and OPT+1/3N. Under certain nitrogen and potassium fertilizer, the yield of relay-cropping potato and soybean increased with the increase of phosphorus fertilizer application, and reaching the highest yield of 52 430.03 kg ha–1 and 3637.13 kg ha–1 under 180 kg ha–1 treatment (OPT+1/3P), respectively. For relay-cropping potato, average fresh-weight of individual tuber reached the highest under 180 kg ha–1 treatment (OPT+1/3P), which was 185.13 g. For relay-cropping soybean, the average of pods per plant, seeds per plant and seeds per pod reached the highest under OPT+1/3P, which were 74.24, 1.87, and 139.15 respectively. Therefore, nitrogen (N 180 kg ha–1) fertilizer was adequate, phosphorus (P 135 kg ha–1) fertilizer a little lacking, and potassium (K 135 kg ha–1) fertilizer on the high side in OPT treatment.