Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (07): 1057-1066.doi: 10.3724/SP.J.1006.2017.01057

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of Potassium Application on Root Grow and Yield of Sweet Potato and Its Physiological Mechanism

WANG Shun-Yi,LI Huan,LIU Qing,SHI Yan-Xi*   

  1. College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao 266109, China
  • Received:2016-12-20 Revised:2017-04-20 Online:2017-07-12 Published:2017-04-27
  • Contact: Shi Yanxi, E-mail: yanxiyy@163.com, Tel: 0532-82080820 E-mail:644393504@qq.com
  • Supported by:

    This work was supported by the National Modern Agro-industry Technology System (CARS-11-B-14) and the Natural Science Foundation for Young Scientists of China (31301854).

Abstract:

The objective of this study was to investigate the physiological mechanism of potassium application on root growth and yield improvement in sweet potato. Two year field experiment was conducted with three potassium levels (0 kg ha–1, 75 kg ha–1, 150 kg ha–1, and 225 kg ha–1) to study the effects of potassium on root growth, 13C distribution, metabolic enzyme activity, photosynthetic characteristics and yield of sweet potato. Compared with CK, potassium treatments increased ETR 12.7% to 63.6%, Pn by 7.2% to 26.4%. Potassium application improved photosynthetic characteristics and accelerated the accumulation of photosynthate, providing material basis for root growth. While, potassium application was beneficial to the photosynthate products from shoots to roots, root 13C distribution amount increased by 10.6% to 66.2% (P<0.05). Then, potassium application by increasing sucrose synthase, sucrose phosphate synthase and adenosine diphosphate glucose pyrophosphorylase activities to accelerate the assimilation of carbon in roots, to improve the photosyntheate accumulation in roots, and to promote root differentiation and growth in sweet potato. In early growing stage, potassium application increased total root length by 13.6% to 22.8%, the average diameter of root increased by 11.3% to 51.9%, and significantly increased the differentiation from adventitious roots to fibrous roots and tuberous roots (P<0.05), which is beneficial to the early formation of effective tuber, ensureing the effective number of tubers per plant. Potassium treatments increased the root biomass and average tuber weight. Compared with CK, the potassium treatments increased yield by 5.8%, 24.3%, and 44.7% in 2014, and by 7.9%, 13.4%, and 22.8% in 2015.

Key words: Sweetpotato, Root grow, Photosynthetic characteristics, Chlorophyll fluorescence, 13C distribution, C enzyme activities

[1] 王翠娟, 史春余, 王振振, 柴沙沙, 柳洪鹃, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响, 作物学报, 2014, 40: 1677–1685 Wang C J, Shi C Y, Wang Z Z, Chai S S, Liu H J, Shi Y X. Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agrono Sin, 2014, 40: 1677–1685 (in Chinese with English abstract) [2] Pervez H, Ashraf M, Makhdum M I. Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.). Photosynthetica, 2001, 42: 251–255 [3] Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud J B, Very A A, Simonneau T, Sentenac H. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA, 2008, 105: 5271–5276 [4] Han Q. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol, 2011, 31: 976–984 [5] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670–681 [6] 宁运旺, 曹炳阁, 朱绿丹, 张永春, 汪吉东, 许仙菊, 张辉, 马洪波. 施钾水平对甘薯干物质积累与分配和钾效率的影响. 江苏农业学报, 2012, 28(2): 320–325 Ning Y W, Cao B G, Zhu L D, Zhang Y C, Wang J D, Xu X J, Zhang H, Ma H B. Effects of potassium application rates on dry matter accumulation, dry matter distribution, and potassium efficiency of sweet potato. Jiangsu Agric Sci, 2012, 28(2): 320–325 (in Chinese with English abstract) [7] Hammett L K, Miller C H, Swallow W H, Harden C. Influence of N source, N rate, and K rate on the yield and mineral concentration of sweet potato. J Am Soc Hort Sci, 1984, 109: 294–298 [8] 史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯某些生理特性和产量形成的影响. 植物营养与肥料学报, 2002, 8: 81–85 Shi C Y, Wang Z L, Zhao B Q, Guo F F, Yu S L. Effect of potassium nutrition on some physiological characteristics and yield formation of sweet potato. Plant Nutr Fert Sci, 2002, 8: 81–85 (in Chinese with English abstract) [9] 李韦柳, 熊军, 唐秀桦, 闫海锋, 郑虚, 韦民政, 覃维治, 许娟. 施钾量对淀粉型甘薯徐薯26产量形成及钾利用的影响. 热带作物学报, 2015, 36: 1037–1042. Li W L, Xiong J, Tang X H, Yan H F, Zheng X, Wei M Z, Tan W Z, Xu J. Effects of potassium application rate on yield formation and potassium utilization efficiency of starchy Sweet potato variety Xushu 26. Chin J Trop Crops, 2015, 36: 1037–1042 (in Chinese with English abstract) [10] 王道中, 刘小平, 钟昆林, 郭志彬, 田茂尚. 安徽省砂姜黑土地区甘薯钾肥适宜用量研究. 作物杂志, 2014, (5): 109–112 Wang D Z, Liu X P, Zhong K l, Guo Z B, Tian M S. Study on Optimum potassium rate application on Sweet potato in Shajiang black soil in Anhui province. Crops, 2014, (5): 109–112 (in Chinese with English abstract) [11] Foloni J S S, Corte A J, Corte J R D N, Fabio R E, Carlos S T. Topdressing fertilization with nitrogen and potassium levels in sweet-potato. Semina Ciências Agrárias, 2013, 34: 117–126 [12] 宁运旺, 马洪波, 张辉, 许建平, 汪吉东, 许仙菊, 张永春. 氮、磷、钾对甘薯生长前期根系形态和植株内源激素含量的影响. 江苏农业学报, 2013, 29: 1326–1332 Ning Y W, Ma H B, Zhang H, Xu J P, Wang J D, Xu X J, Zhang Y C. Effects of nitrogen, phosphorus and potassium on root morphology and endogenous hormone contents of sweet potato at early growing stages. Jiangsu Agric Sci, 2013, 29: 1326–1332 (in Chinese with English abstract) [13] 齐鹤鹏, 安霞, 刘源, 朱国鹏, 汪吉东, 张永春. 施钾量对甘薯产量及钾素吸收利用的影响. 江苏农业学报, 2016, 32(1): 84–89 Qi H P, An X, Liu Y, Zhu G P, Wang J D, Zhang Y C. Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato genotypes. Jiangsu Agric Sci, 2016, 32(1): 84–89 (in Chinese with English abstract) [14] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 12–18 Bao S D. Analysis of Soil Aggregation. Beijing: China Agricultural Press, 2000. pp 12–18(in Chinese) [15] Hironaka K, Ishibashi K, Hakamada K. Effect of static loading on sugar contents and activities of invertase, UDP-glucose pyrophosphorylase and sucrose 6-phosphate synthase in potatoes during storage. Potato Res, 2001, 44: 33–39 [16] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31: 559–566 Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol, 2005, 31: 559–566 (in Chinese with English abstract) [17] Noh S A, Lee H S, Kim Y S, Paek K H, Shin J S, Bae J M. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013, 64: 129–142 [18] 江苏省农业科学院和山东省农业科学院. 中国甘薯栽培学. 上海: 上海科学技术出版社, 1984. pp 41–45 Jiangsu Academy of Agricultural Sciences and Shandong Academy of Agricultural Sciences.Sweet Potato Cultivation, Shanghai: Shanghai science and Technology Press, 1984. pp 41–45 (in Chinese) [19] 邹春琴, 李振声, 李继云. 小麦对钾高效吸收的根系形态学和生理学特征. 植物营养与肥料学报, 2001, 7: 36–43 Zhou C Q, Li Z S, Li J Y. Study on difference in morpholofical and physiological characters of wheat varieties to potassium. Plant Nutr Fert Sci, 2001, 7: 36–43 (in Chinese with English abstract) [20] 潘艳花, 马忠明, 吕晓东, 杜少平, 薛亮. 不同供钾水平对西瓜幼苗生长和根系形态的影响. 中国生态农业学报, 2012, 20: 536–541 Pan Y H, Ma Z M, Lü X D, Du S P, Xue L. Effects of different potassium nutrition on growth and root morphological traits of watermelon seedling. Chin J Eco-Agric, 2012, 20: 536–541 (in Chinese with English abstract) [21] 宁运旺, 马洪波, 许仙菊, 汪吉东, 张辉, 许建平, 陈杰, 张永春. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响. 中国农业科学, 2013, 46: 486–495 Ning Y W, Ma H B, Xu X J, Wang J D, Zhang H, Xu J P, Chen J, Zhang Y C. Effects of deficiency of N, P, or K on growth traits and nutrient uptakes of sweet potato at early growing stage. Sci Agric Sin, 2013, 46: 486–495 (in Chinese with English abstract) [22] 范伟国, 杨洪强. 平邑甜茶根系构型、养分吸收和新梢生长对根域形状的反应. 中国农业科学, 2014, 47: 3907–3913 Fan W G, Yang H Q. Response of root architecture, nutrients uptake and shoot growth of Malus hupehensis seedling to the shape of root zone. Sci Agric Sin, 2014, 47: 3907–3913 (in Chinese with English abstract) [23] Shcansker G, Srivastava A, Covindjee, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785–796 [24] Yu G S, Liu B, Wang L F, Li M H, Liu Y. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. Photosynth Res, 2006, 90: 67–78 [25] Strasser R J, Srivastava A, Covindjee. Ployphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32–42 [26] 孙骏威, 李素芳, 付贤树, 奚辉; 王腾浩. 低钾对水稻不同叶位叶片光合特性及抗氧化系统的影响. 核农学报, 2006, 21: 404–408 Sun J W, Li S F, Fu X S, Xi H, Wang T H. Effects of low potassium stress on photosynthetic characteristics and antioxidant systems in different position leaves of rice plants. J Nucl Agric Sci, 2006, 21: 404–408 (in Chinese with English abstract) [27] Gilmore A M, Hazlett T L, Debrunner P G. Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem Photobiol, 1996, 64: 552–563 [28] 孙骏威, 翁晓燕, 李峤, 邵建林. 缺钾对水稻不同品种光合和能量耗散的影响. 植物营养与肥料学报, 2007, 13: 577–584 Sun J W, Wen X Y, Li Q, Shao J L. Effects of potassium-deficiency on photosynthesis and energy dissipation in different rice cultivars. Plant Nutr Fert Sci, 2007, 13: 577–584 (in Chinese with English abstract) [29] Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink.. Ann Rev Plant Biol, 2004, 55: 341–372 [30] Turgeon R. The role of phloem loading reconsidered. Plant Physiol, 2010, 152:1817–1123 [31] 陈晓光, 史春余, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛. 施钾时期对食用甘薯光合特性和块根淀粉积累的影响. 应用生态学报, 2013, 24: 759–763 Chen X G, Shi C Y, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M. Effects of potassium fertilization period on photosynthetic characteristics and storage root starch accumulation of edible sweet potato. Chin J Appl Ecol, 2013, 24:759–763 (in Chinese with English abstract) [32] 王翠娟, 史春余, 刘娜, 刘双荣, 余新地. 结薯数差异显著的甘薯品种生长前期根系特性及根叶糖组分比较. 作物学报, 2016, 42: 131–140 Wang C J, Shi C Y, Liu N, Liu S R, Yu X D. Comparison of root characteristics and sugar components in root and leaf at early growth phase of sweet potato varieties with significant difference in valid storage root number. Acta Agron Sin, 2016, 42: 131–140 (in Chinese with English abstract) [33] 宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015, 41: 432–439 Ning Y W, Ma H B, Zhang H, Zhang J D, Xu X J, Zhang Y C. Response of sweet potato in source-sink relationship establishment, expanding, and balance to nitrogen application rates, Acta Agron Sin, 2015, 41: 432–439 (in Chinese with English abstract)

[1] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[5] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[6] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[7] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[8] JING Xia, ZOU Qin, BAI Zong-Fan, HUANG Wen-Jiang. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data [J]. Acta Agronomica Sinica, 2021, 47(11): 2067-2079.
[9] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[10] FENG Ke-Yun, WANG Ning, NAN Hong-Yu, GAO Jian-Gang. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton [J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
[11] BAI Zong-Fan,JING Xia,ZHANG Teng,DONG Ying-Ying. Canopy SIF synergize with total spectral reflectance optimized by the MDBPSO algorithm to monitor wheat stripe rust [J]. Acta Agronomica Sinica, 2020, 46(8): 1248-1257.
[12] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[13] HOU Hong-Qian,LIN Hong-Xin,LIU Xiu-Mei,JI Jian-Hua,LIU Yi-Ren,LAN Xian-Jin,LYU Zhen-Zhen,ZHOH Wei-Jun. Influence of long-term fertilizer application on chlorophyll fluorescence characteristics and grain yield of double cropping late rice [J]. Acta Agronomica Sinica, 2020, 46(02): 280-289.
[14] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[15] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!