Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (08): 1115-1121.doi: 10.3724/SP.J.1006.2017.01115

• REVIEW • Previous Articles     Next Articles

Progress in Enhancement of Plant Resistance against Fungal Diseases through Host-Induced Gene Silencing

CHENGWei1,LIHe-Ping2,HEShui-Lin1,LIAOYu-Cai2,*   

  1. 1 National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization / College of CropScience, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Molecular Biotechnology Laboratory of Triticeae Crops / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2017-02-21 Revised:2017-05-14 Online:2017-08-12 Published:2017-05-16
  • Contact: LiaoYucai ,E-mail:yucailiao@mail.hzau.edu.cn,Tel:027-87283008 E-mail:chengwei8503@163.com
  • Supported by:

    ThisresearchwassupportedbytheNationalMajorProjectforDevelopingNewGMCrops(2016ZX08002001-003),theNationalNaturalScienceFoundationofChina(31601761),andtheResearchProjectforYoungTeachersofFujianProvince(JAT160180).

Abstract:

Host-induced gene silencing (HIGS) uses the key genes that are involved in growth and development, sporulation and propagation, and pathogenesis of pathogens as targets, and expresses the RNAi constructs in host plants targeting to the target genes; during infection of plants, pathogens take up dsRNA or siRNA molecules, specifically bind to nucleotide sequences after recognition, and interfere the expression of the target genes, thereby inhibiting infection and spreading of invaded pathogens and thus conferring resistance phenotypes in plants. This technology serves as the solid foundation of plant resistance based on pathogen-specific sequences and has great potential for application in crop improvement against fungal diseases. In this review, recent advances in methodologies, technological routes and application of the HIGS strategy in plants against invading fungal pathogens are summarized; prospects for the future in HIGS-based plant resistance to fungal pathogens were also discussed.

Key words: RNA interfering, Host-induced gene silencing (HIGS), Fungal disease, Transgenic plants

[1]FireAZ.Genesilencingbydouble-strandedRNA.CellDeathDiffer,2007,14:1998–2012
[2]KettingRF.ThemanyfacesofRNAi.DevCell,2011,20:148–161
[3]NunesCC,DeanAR.Host-inducedgenesilencing:Atoolforunderstandingfungalhostinteractionandfordevelopingnoveldiseasecontrolstrategies.MolPlantPathol,2012,13:519–529
[4]KochA,KogelKH.Newwindinthesails:improvingtheagronomicvalueofcropplantsthroughRNAi-mediatedgenesilencing.PlantBiotechnolJ,2014,12:821–831
[5]PanwarV,McCallumB,BakkerenG.Afunctionalgenomicsmethodforassayinggenefunctioninphytopathogenicfungithroughhost-inducedgenesilencingmediatedbyagroinfiltration.MethodsMolBiol,2015,1287:179–189
[6]NowaraD,GayA,LacommeC,ShawJ,RidoutC,DouchkovD,HenselG,KumlehnJ,SchweizerP.HIGS:Host-inducedgenesilencingintheobligatebiotrophicfungalpathogenBlumeriagraminis.PlantCell,2010,22:3130–3141
[7]TinocoML,DiasBB,Dall'AsttaRC,PamphileJA,AragaoFJ.Invivotrans-specificgenesilencinginfungalcellsbyinplantaexpressionofadouble-strandedRNA.BMCBiol,2010,8:27
[8]MelnykCW,MolnarA,BaulcombeDC.IntercellularandsystemicmovementofRNAsilencingsignals.EMBOJ,2011,30:3553–3563
[9]NishkuraK.AshortprimeronRNAi:RNA-directedRNApolymeraseactsasakeycatalyst.Cell,2001,107:415–418
[10]VaistijFE,JonesL,BaulcombeDC.SpreadingofRNAtargetingandDNAmethylationinRNAsilencingrequirestranscriptionofthetargetgeneandaputativeRNAdependentRNApolymerase.PlantCell,2002,14:857–867
[11]WasseneggerM,KrczalG.NomenclatureandfunctionsofRNA-directedRNApolymerases.TrendsPlantSci,2006,11:142–151
[12]PliegoC,NowaraD,BoncianiG,GheorgheDM,XuR,SuranaP,WhighamE,NettletonD,BogdanoveAJ,WiseRP,SchweizerP,BindschedlerLV,SpanuPD.Host-inducedgenesilencinginbarleypowderymildewrevealsaclassofribonuclease-likeeffectors.MolPlantMicrobeInteract,2013,26:633–642
[13]ZhangH,GuoJ,VoegeleRT,ZhangJ,DuanY,LuoH,KangZ.FunctionalcharacterizationofcalcineurinhomologsPsCNA1/PsCNB1inPucciniastriiformisf.sp.triticiusingahost-inducedRNAisystem.PLoSOne,2012,7:e49262
[14]PanwarV,McCallumB,BakkerenG.EndogenoussilencingofPucciniatriticinapathogenicitygenesthroughinplanta-expressedsequencesleadstosuppressionofrustdiseasesonwheat.PlantJ,2013,73:521–532
[15]PanwarV,McCallumB,BakkerenG.Host-inducedgenesilencingofwheatleafrustfungusPucciniatriticinapathogenicitygenesmediatedbytheBarleystripemosaicvirus.PlantMolBiol,2013,81:595–608
[16]KochA,KumarN,WeberL,KellerH,ImaniJ,KogelKH.Host-inducedgenesilencingofcytochromeP450lanosterolC14a-demethylase-encodinggenesconfersstrongresistancetoFusariumspecies.ProcNatlAcadSciUSA,2013,110:19324–19329
[17]GhagSB,ShekhawatUK,GanapathiTR.Host-inducedpost-transcriptionalhairpinRNA-mediatedgenesilencingofvitalfungalgenesconfersef?cientresistanceagainstFusariumwiltinbanana.PlantBiotechnolJ,2014,12:541–553
[18]ChengW,SongXS,LiHP,CaoLH,SunK,QiuXL,XuYB,YangP,HuangT,ZhangJB,QuB,LiaoYC.Host-inducedgenesilencingofanessentialchitinsynthasegeneconfersdurableresistancetoFusariumheadblightandseedlingblightinwheat.PlantBiotechnolJ,2015,13:1335–1345
[19]ChenW,KastnerC,NowaraD,Oliveira-GarciaE,RuttenT,ZhaoY,DeisingHB,KumlehnJ,SchweizerP.Host-inducedsilencingofFusariumculmorumgenesprotectswheatfrominfection.JExpBot,2016,67:4979–4991
[20]WangM,WeibergA,LinFM,ThommaBP,HuangHD,JinH.Bidirectionalcross-kingdomRNAiandfungaluptakeofexternalRNAsconferplantprotection.NatPlants,2016,2:16151
[21]ZhangMX,WangQH,XuK,MengYL,QuanJL,ShanWX.ProductionofdsRNAsequencesinthehostplantisnotsufficienttoinitiategenesilencinginthecolonizingoomycetepathogenPhytophthoraparasitica.PLoSOne,2011,6:e28114
[22]GovindarajuluM,EpsteinL,WroblewskiT,MichelmoreRW.Host-inducedgenesilencinginhibitsthebiotrophicpathogencausingdownymildewoflettuce.PlantBiotechnolJ,2015,13:875–883
[23]YinC,JurgensonJE,HulbertSH.Developmentofahost-inducedRNAisysteminthewheatstriperustfungusPucciniastriiformisfsp.tritici.MolPlantMicrobeInteract,2011,24:554–561
[24]Franco-ZorrillaJM,ValliA,TodescoM,MateosI,PugaMI,Rubio-SomozaI,LeyvaA,WeigelD,GarcíaJA,Paz-AresJ.TargetmimicryprovidesanewmechanismforregulationofmicroRNAactivity.NatGenet,2007,39:1033–1037
[25]TodescoM,Rubio-SomozaI,Paz-AresJ,WeigelD.AcollectionoftargetmimicsforcomprehensiveanalysisofmicroRNAfunctioninArabidopsisthaliana.PLoSGenet,2010,6:e1001031
[26]MengY,ShaoC,WangHandJinY.Targetmimics:anembeddedlayerofmicroRNA-involvedgeneregulatorynetworksinplants.BMCGenomics,2012,13:197
[27]WeibergA,WangM,LinFM,ZhaoH,ZhangZ,KaloshianI,HuangHD,JinH.FungalsmallRNAssuppressplantimmunitybyhijackinghostRNAinterferencepathways.Science,2013,342:118–123
[28]KochA,BiedenkopfD,FurchA,WeberL,RossbachO,AbdellatefE,LinicusL,JohannsmeierJ,JelonekL,GoesmannA,CardozaV,McMillanJ,MentzelT,KogelKH.AnRNAi-basedcontrolofFusariumgraminearuminfectionsthroughsprayingoflongdsRNAsinvolvesaplantpassageandiscontrolledbythefungalsilencingmachinery.PLoSPathog,2016,12:e1005901
[29]ZhangT,ZhaoYL,ZhaoJH,WangS,JinY,ChenZQ,FangYY,HuaCL,DingSW,GuoHS.CottonplantsexportmicroRNAstoinhibitvirulencegeneexpressioninafungalpathogen.NatPlants,2016,2:16153

[1] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[2] LU Yan;XU Zhao-Shi;ZHANG Rui-Yue;LIU Li;LI Lian-Cheng;CHEN Ming;YE Xing-Guo;CHEN Yao-Feng;MA You-Zhi. Overexpression of W6 Gene Increases Salt Tolerance in Transgenic To-bacco Plants [J]. Acta Agron Sin, 2008, 34(06): 984-990.
[3] JI Qiang-Hua;REN Zheng-Long. Tissue Culture Response and Selection of Transgenic Receptors in Wheat(Triticum aestivum L.) Cultivars [J]. Acta Agron Sin, 2004, 30(09): 855-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!