Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (02): 169-176.doi: 10.3724/SP.J.1006.2018.00169

• Orginal Article • Previous Articles     Next Articles

Identification and Gene Mapping of a Floral Organ Number Mutant mf2 in Rice (Oryza sativa)

Xian-Cheng YAN**, Li-Kai CHEN**, Yu-Hua LUO, Wen-Long LUO, Hui WANG, Tao GUO*(), Zhi-Qiang CHEN*()   

  1. National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, Guangzhou, China;
  • Received:2017-05-27 Accepted:2017-09-10 Online:2018-02-12 Published:2017-10-27
  • Contact: Xian-Cheng YAN,Li-Kai CHEN,Tao GUO,Zhi-Qiang CHEN E-mail:guo.tao@vip.163.com;zqchen@scau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0102102), the China Agricultural Research System (CARS-01-12), and the Applied Research and Development Funds in Guangdong (2015B020231011).

Abstract:

A rice floral organ mutant mf2 (multi-floret 2) was identified from Hanghui 7, an indica restorer line in rice (Oryza sativa L.), which was treated with heavy ion irradiation. The glumes, lodicules, stamens, pistil of the mutant increased, and most of the spikelets had 2-3 flowers. The palea and lemma of mf2 mutant were dehiscent, the shape and number of vascular bundles were different from those of the wild-type. Scanning electron microscope analysis revealed that the flowers variation of mf2 had been formed in the differentiation of the primordium during the spike differentiation stage. The heading date of the mf2 mutant was delayed, the plant height was decreased, but the number of panicles was increased, showing that the vegetative growth of the mutant was also affected. Genetic analysis showed that the mf2 mutant phenotype was controlled by a recessive nuclear gene. There are 321 recessive individuals from the F2 segregation population were used to fine map MF2. Finally, MF2 was located in a 102 kb physical interval between markers SSR39108 and InDel39210 on chromosome 1.

Key words: rice (Oryza sativa L.), heavy ion mutagenesis, floral mutants, gene mapping

Table 1

Comparison of main agronomic traits between wild type and mf2 mutant"

材料
Material
抽穗期
Heading period
(d)
株高
Plant height
(cm)
单株穗重
Single plant spike weight (g)
穗数
Panicle number per plant
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
野生型Wild-type 70.62±0.28 104.60±0.90 27.73±0.76 7.33±0.58 86.49±0.45 21.47±0.18
突变体mf2 79.33±2.16* 92.44±1.37** 10.66±1.70** 13.20±0.86** 12.36±1.82** 13.64±0.10**

Fig. 1

Phenotypes of mf2 and the wild type A: phenotype of wild type (left) and mf2 (right) individual plant during the filling stage; B: grains of wild type (lower) and mutant mf2 (upper); C, D: spikelet of wild-type, D is the C removing the lemma and palea; E-J: spikelets of the mutant mf2, where F, H, and J are E, G, and I, respectively removing hulls. Scale bars = 100 mm (A) or 1mm (C-J)."

Fig. 2

Ratio of the floret and grain number per spikelet of mf2 mutant"

Fig. 3

Micrographs of wild-type and mf2 spikelets I: observation of wild type and mf2 spikelets paraffin sections. A: wild type spikelet; B, C: mf2 spikelets containing hull-like structure; D: partial enlargement of the vascular bundle, red arrowheads indicate vascular bundles. II: scanning electron micrographs of wild type and mf2 young spikelets. A, B: wild type young spikelets at a time when stamen primordia are emerging; C, D: mf2 young spikelets at the same time of A and B, asterisk indicates a extra palea primordium in D."

Table 2

Genetic analysis of mf2 mutant"

组合
Cross
F1表型
Phenotype of F1
F2表型 Phenotype of F2 χ2(3:1) χ20.05
正常表型Wild type 突变表型Mutant type 总数Total
02428/mf2 野生型 Wild type 357 126 483 0.249 3.84
Francis/mf2 野生型 Wild type 1091 321 1412 3.748

Fig. 4

Fine mapping of MF2"

Table 3

Primer sequence used for MF2 mapping"

标记
Marker
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
InD38433 AGGAGAAGCTCCCAGTCGTT AATCCAAGTATCCCTTGCAAAC
InD38713 AACAGCAACGGTAACTTTCACA ACGCTTAGGAAGCTATGAGGTG
SSR39108 CATGTCTTGCAAGCTAACCAAA CTATATATGCCACGACGAGCAG
InD39167 GCAAGTAAACCAACCACACGTA CCATCCATCAATCCGAACTACT
InD39210 TTTAAGGGGTTTCTAGCTGCTG ATAGCTTTGGACCTGTTTTGGA
InD39410 TGAACTCAGGCCCAGTTTAGTT TTGAGCCTCCAGTAGTTCCTTC

Table 4

Candidate genes of MF2 mapped region"

基因号
Gene ID
位置
Location
基因注释
Description
Os01g67364 39114681-39117532 Ty3-gypsy家族反转录转座子蛋白 Retrotransposon protein, putative, Ty3-gypsy subclass, expressed
Os01g67370 39129736-39134858 表达蛋白 Expressed protein
Os01g67380 39136361-39136861 表达蛋白 Expressed protein
Os01g67390 39136937-39139380 花粉Ole-e-1变应原和扩展蛋白家族的蛋白前体
POEI32-Pollen Ole-e-I allergen and extensin family protein precursor, expressed
Os01g67400 39140444-39140762 假定蛋白 Hypothetical protein
Os01g67410 39141130-39145479 AP2/EREBP转录因子 AP2/EREBP transcription factor BABY BOOM, putative, expressed
Os01g67420 39158153-39165729 脂肪酶 Lipase, putative, expressed
Os01g67430 39177169-39178676 脂肪酶 Lipase, putative, expressed
Os01g67440 39179769-39180065 转座子蛋白 Transposon protein, putative, unclassified, expressed
Os01g67450 39195689-39196972 脂肪酶 Lipase, putative, expressed
[1] Guo S, Sun B, Looi L S, Xu Y, Gan E S, Huang J, Ito T.Co-ordination of flower development through epigenetic regulation in two model species: rice andArabidopsis. Plant Cell Physiol, 2015, 56: 830-842
[2] Yanofsky M F.Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development.Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 167-188
[3] Fornara F, Marziani G, Mizzi L, Kater M, Colombo L.MADS-box genes controlling flower development in rice.Plant Biol, 2003, 5: 16-22
[4] 田大刚, 刘华清, 苏军, 张礼华, 王锋. 水稻与拟南芥中控制花器官发育MADS-box基因的比较研究进展. 福建农业学报, 2011, 26: 309-320
Tian D G, Liu H Q, Su J, Zhang L H, Wang F.Flower-Development-Controlling MADS-box genes in rice andArabidopsis thaliana. Fujian J Agric Sci, 2011, 36: 309-320 (in Chinese with English abstract)
[5] Yoshida H, Nagato Y.Flower development in rice.J Exp Bot, 2011, 62: 4719-4730
[6] Takahashi M, Nagasawa N, Kitano H, Nagato Y.Panicle phytomer 1 mutations affect the panicle architecture of rice. Theor Appl Genet, 1998, 96: 1050-1056
[7] Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K.Down-regulation ofRFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA, 1998, 95: 1979-1982
[8] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G.Leafy hull sterile 1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884
[9] Chanhong K, Donghoon J, An G H.Molecular cloning and characterization ofOsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa. Plant Sci, 2000, 152: 17-26
[10] Jang S, Lee B, Kim C, Kim S J, Yim J, Han J J, Lee S, Kim S R, An G.TheOsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol, 2003, 53: 357-369
[11] Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y.The geneFLORAL ORGAN NUMBER1 regulates floral meristern size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649-5657
[12] Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D.TheFLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 2006, 142: 1039-1052
[13] Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano H Y.Conservation and diversification of meristem maintenance mechanism inOryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol, 2006, 47: 1591-1602
[14] Zhao L, Xu S, Chai T, Tai W.OsAP2-1, an AP2-like gene from Oryza sativa, is required for flower development and male fertility. Plant Reprod, 2006, 19: 197-206
[15] Lee D Y, Lee J, Moon S, Park S Y, An G.The rice heterochronic geneSUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J, 2007, 49: 64-78
[16] Sun Q, Zhou D X.Rice jmjC domain-containing geneJMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci USA, 2008, 105: 13679-13684
[17] Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y.A putative lipase geneEXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J Cell Mol Biol, 2009, 57: 593-605
[18] Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, Xie R, Luo H, Zhao X, Meng Z.STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789-801
[19] Ren D Y, Li Y F, Wang Z, Xu F F, Guo S, Zhao F M, Sang X C, Ling Y H, He G H.Identification and gene mapping of amulti-floret spikelet 1 (mfsl) mutant associated with spikelet development in rice. J Integr Agric, 2012, 11: 1574-1579
[20] Wang N, Li Y F, Sang X C, Ling Y H, Zhao F M, Yang Z L, He G H.Nonstop glumes (nsg), a novel mutant affects spikelet development in rice. Genes & Genomics, 2013, 35: 149-157
[21] Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D.Jasmonic acid regulates spikelet development in rice.Nat Commun, 2014, 5: 3476
[22] Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y.Down-regulation of a LBD-like gene,OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. J Exp Bot, 2015, 66: 99-112
[23] Wang H H, Zhang L, Cai Q, Jin Z M, Zhao X X, Huang Q M, Luo Z J, Chen M J, Zhang D B, Yuan Z.OsMADS32 interacts with PI-like proteins and regulates rice flower development. J Integr Plant Biol, 2015, 57: 504-513
[24] Yang C, Ma Y, Li J.The riceYABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. J Exp Bot, 2016, 67: 5545-5556
[25] 李云峰, 杨正林, 凌英华, 王楠, 任德勇, 王增, 何光华. 水稻多小花小穗突变体mf1的鉴定与基因定位. 作物学报, 2011, 37: 280-285
Li Y F, Yang Z L, Ling Y H, Wang N, Ren D Y, Wang Z, He G H.Characterization and gene mapping of a spikelet mutantmf1 in rice. Acta Agron Sin, 2011, 37: 280-285 (in Chinese with English abstract)
[26] Murray M G, Thompson W F.Rapid isolation of high molecular weight plant DNA.Nucl Acids Res, 1980, 8: 4321-4326
[27] Michelmore R W, Paran I, Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[28] 赵利峰, 柴团耀. AP2/EREBP转录因子在植物发育和胁迫应答中的作用. 植物学通报, 2008, 25: 89-101
Zhao L F, Chai T Y.Roles of AP2/EREBP family of transcription factors in development and stress response of plants,Chin Bull Bot, 2008, 25: 89-101 (in Chinese with English abstract)
[29] Poethig R S.Phase change and the regulation of developmental timing in plants.Science, 2003, 301: 334-336
[30] Feng L, Gao Z, Xiao G, Huang R, Zhang H.Leucine-rich repeat receptor-like kinaseFON1 regulates drought stress and seed germination by activating the expression of ABA-responsive fenes in rice. Plant Mol Biol Rep, 2014, 32: 1158-1168
[31] Jiang L, Qian Q, Mao L, Zhou Q Y, Zhai W X.Characterization of the rice floral organ number mutantfon3. J Integr Plant Biol, 2005, 47: 100-106
[32] Li Y, Xu P, Zhang H, Peng H, Zhang Q, Wang X, Wu X.Characterization and identification of a novel mutantfon(t) on floral organ number and floral organ identity in rice. J Genet Genomics, 2007, 34: 730-737
[33] Kaplinsky N J, Freeling M.Combinatorial control of meristem identity in maize inflorescences.Development, 2003, 130: 1149-1158
[34] Lee D Y, An G.Two AP2 family genes,SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J, 2012, 69: 445-461
[35] Padham A K, Hopkins M T, Wang T W, Mcnamara L M, Lo M, Richardson L G, Smith M D, Taylor C A, Thompson J E.Characterization of a plastid triacylglycerol lipase fromArabidopsis. Plant Physiol, 2007, 143: 1372-1384
[36] Zhang B, Wu S, Zhang Y, Xu T, Guo F, Tang H, Li X, Wang P, Qian W, Xue Y.A high temperature-dependent mitochondrial lipaseEXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice(Oryza sativa L.). PLoS Genet, 2016, 12: e1006152
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[4] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[5] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[6] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[7] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[8] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[9] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[10] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[11] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[12] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[13] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[14] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[15] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!