Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1159-1168.doi: 10.3724/SP.J.1006.2018.01159

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional Characterization of Soybean Cystatins Gene GmCYS2

Dan-Xia KE(),Kun-Peng PENG,Yan JIA,Shuo ZENG,Ying-Zhi WANG,Jing-Yi ZHANG   

  1. College of Life Sciences / Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, China
  • Received:2017-11-23 Accepted:2018-03-26 Online:2018-08-10 Published:2018-04-20
  • Contact: Dan-Xia KE E-mail:kdx_029@163.com
  • Supported by:
    the National Natural Science Foundation of China(31400213);Henan Province Science and Technology Research Projects(182102110448);the Funding Scheme for Young Core Teachers of Xinyang Normal University(2015);Nanhu Scholars Program for Young Scholars of XYNU(2016)

Abstract:

CYS (cystatin) plays an important role in nodulation, nodule development and senescence. In this study, we cloned a soybean CYS family gene GmCYS2, which had the highest similarity with pigeonpea (Cajanus cajan) CYS, shown by amino acid sequence alignment and phylogenetic tree analysis. The gene encoding protein was expressed and purified in vitro. Enzyme activity inhibition experiment of recombinant protein GmCYS2 showed that the cathepsin inhibitory activity of GmCYS2 protein on L and B classes was higher than that on H class, and cathepsin inhibitory activity in nodule extract from nodule at 30 d was generally higher than that at the 60 d. In addition, the plant overexpression vector was constructed and the GmCYS2-overexpression composite plants were obtained by Lotus japonicus hairy root transformation method. Overexpression of GmCYS2 increased the number of nodules in Lotus japonicus plants and up regulated the expression levels of symbiotic marker genes. These results suggest that GmCYS2 protein can inhibit the enzyme activity and positively regulate the symbiotic nodulation of Lotus japonicus.

Key words: Glycine max, cystatin, cysteine protease, symbiotic nodulation, Lotus japonicus

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Sequence of primer (5′-3′)
F-GmCYS2-pro. TACGGGGGATTGGTC
R-GmCYS2-pro. TCACTGCGTGGAAGGAG
F-OX CGggatccATGGCGGCGTTGATAAG
R-OX GGggtaccTCACTGCGTGGAAGGAG
F-NIN-rt AACTCACTGGAAACAGGTGCTTTC
R-NIN-rt CTATTGCGGAATGTATTAGCTAGA
F-ENOD40-1-rt GGAGGTATGCTCAAACATTC
R-ENOD40-1-rt GTAACTTCTCAAGAGAAGACC
F-ENOD40-2-rt CAAAACTCGTTATGTTGCGG
R-ENOD40-2-rt CACCTCAAAGGAAGAAGAACA
F-GmCYS2-rt CAACAAGTGGTGTCTG
R-GmCYS2-rt TCACTGCGTGGAAGGAG
F-Polyubiquitin TTCACCTTGTGCTCCGTCTTC
R-Polyubiquitin AACAACAGCACACACAGACAATC

Fig. 1

Amino acid sequence alignment (A) and phylogenetic tree (B) analysis of GmCYS2 with its homologs in some other plants The main cystatin conserved motifs are in yellow, red, green, and blue boxes in panel A. The scale in panel B represents genetic similarity, indicating the proximity relationships among species."

Fig. 2

Sequence analysis of His-GST-GmCYS2 fusion protein 5-10: His tag; 14-233: GST tag; 244-250: TEV cleavage site; 251-355: GmCYS2 protein sequence (Removing signal peptide of 26 amino acids at N end)."

Fig. 3

Expression, antibody detection and purification of GmCYS2 protein in vitro A: SDS-PAGE analysis of protein expression in BL21 (DE3) strain; B: Western blot analysis of protein with anti-His antibody; C: SDS-PAGE analysis of purified protein. M1: protein marker; M2: Western marker; M3: protein pre staining marker; PC1: BSA (1 μg); PC2: BSA (2 μg); NC: Non induced whole cell lysate. 1: Whole cell lysate induced under 15°C for 16 h; 2: Whole cell lysate induced under 37°C for 4 h; NC1: Supernatant of non-induced cell lysate; NC2: The precipitation of non-induced cell lysate; 3: Supernatant of cell lysate induced under 15°C for 16 h; 4: The precipitation of cell lysate induced under 15°C for 16 h; 5: Supernatant of cell lysate induced under 37°C for 4 h; 6: The precipitation of cell lysate induced under 37°C for 4 h; 7: Purified protein from supernatant of cell lysate induced under 37°C for 4 h."

Fig. 4

Inhibitory activity of the recombinant protein GmCYS2 in extracts from nodules in different periods in vitro Samples were extracts of 30-day- and 60-day-old nodules. Reaction buffer added with purified GmCYS2 protein and the specific substrates cathepsin L-like, B-like, and H-like, respectively. Values are triplicate measurements. * P < 0.05."

Fig. 5

Effect of GmCYS2 overexpression on symbiosis in L. japonicus A: Transgenic plants at 30 days after inoculation with MAFF303099 showing hairy roots expressing pMUb: GmCYS2 (GmCYS2-OX) or the empty vector pU1301 (CK). Bar = 10 mm; B: Mean numbers of nodules per plant of L. japonicus; C: The relative ratios of various groups divided by nodule number per plant; D: GUS identification of positive hairy roots; E: Detection of GmCYS2 gene expression in positive hairy roots by RT-PCR; M: DL2000 DNA marker; 1: plasmid as positive control; 2: empty vector control; 3-5: composite plants."

Table 2

Statistics of nodule number of composite L. japonicus overexpressing GmCYS2"

试验
Experiment
对照植株
CK
超表达植株
GmCYS2-OX
P
P-value
1 5.42±1.53 (n=30) 10.33±2.35 (n=25) < 0.01
2 6.18±2.05 (n=23) 9.87±2.48 (n=20) < 0.01

Fig. 6

Detection of transcription levels of GmCYS2 and symbiotic marker genes in transgenic hairy roots qPCR analysis of the transcript levels of GmCYS2 and symbiotic marker genes NIN, ENOD40-1, and ENOD40-2 in the GmCYS2-OX and control hairy roots. * P<0.05, ** P<0.01."

[1] Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I . Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett, 2007,581:2914-2918
doi: 10.1016/j.febslet.2007.05.042
[2] Stubbs M T, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V . The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J, 1990,9:1939-1947
[3] Margis R, Reis E M, Villeret V . Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys, 1998,359:24-30
doi: 10.1006/abbi.1998.0875 pmid: 9799556
[4] Martinez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I . Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol, 2009,151:1531-1545
doi: 10.1104/pp.109.146019
[5] Benchabane M, Schlüter U, Vorster J, Goulet M C, Michaud D . Plant cystatins. Biochimie, 2010,92:1657-1666
doi: 10.1016/j.biochi.2010.06.006
[6] Arai S, Matsumoto I, Emori Y, Abe K . Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem, 2002,50:6612-6617
doi: 10.1021/jf0201935
[7] Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M . AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem, 2003,270:2593-2604
[8] Hwang J E, Hong J K, Lim C J, Chen H, Je J, Yang K A, Kim D Y, Choi Y J, Lee S Y, Lim C O . Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Rep, 2010,29:905-915
[9] Carrillo L, Martinez M, Ramessar K, Cambra I, Castañera P, Ortego F, Díaz I . Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep, 2011,30:101-112
doi: 10.1007/s00299-010-0948-z
[10] Popovic M, Andjelkovic U, Burazer L, Lindner B, Petersen A, Gavrovic-Jankulovic M . Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). Phytochemistry, 2013,94:53-59
[11] Tan Y, Wang S, Liang D, Li M, Ma F . Genome-wide identification and expression profiling of the cystatin gene family in apple (Malus × domestica Borkh.). Plant Physio Biochem, 2014,79:88-97
[12] Tan Y X, Li M J, Ma F W . Overexpression of MpCYS2, a phytocystatin gene from Malus prunifolia(Willd.) Borkh., confers drought tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tiss Org, 2015,123:15-27
[13] Tan Y X, Li M J, Yang Y L, Sun X, Wang N, Liang B W, Ma F W . Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia(Willd.) Borkh., enhances stomatal closure to confer drought tolerance in transgenic Arabidopsis and apple. Front Plant Sci, 2017,8:33
[14] Tan Y X, Yang Y L, Li C, Liang B W, Li M J, Ma F W . Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia(Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. Plant Physiol Biochem, 2017,115:219-228
[15] Tan Y X, Wei XY, Wang P, Sun X, Li M J, Ma F W . A phytocystatin gene from Malus prunifolia(Willd.) Borkh., MpCYS5, confers salt stress tolerance and functions in endoplasmic reticulum stress response in Arabidopsis. Plant Mol Biol Rep, 2016,34:62-75
[16] Song C, Kim T, Chung W S, Lim C O . The Arabidopsis phytocystatin AtCYS5 enhances seed germination and seedling growth under heat stress conditions. Mol Cells, 2017,40:577-586
[17] Christoff A P, Passaia G, Salvati C, Alves-Ferreira M, Margis- Pinheiro M, Margis R . Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases. Plant Mol Biol, 2016,92:193-207
doi: 10.1007/s11103-016-0504-5 pmid: 27325119
[18] Sun X, Yang S, Sun M, Wang S, Ding X, Zhu D, Ji W, Cai H, Zhao C, Wang X, Zhu Y . A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin- binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Mol Biol, 2014,85:33-48
[19] Labudda M, Różańska E, Szewińska J, Sobczak M, Dzik J M . Protease activity and phytocystatin expression in Arabidopsis thaliana upon heterodera schachtii infection. Plant Physiol Biochem, 2016,109:416-429
[20] Yu Y, Zhang G, Li Z, Cheng Y, Gao C, Zeng L, Chen J, Yan L, Sun X, Guo L, Yan Z . Molecular cloning, recombinant expression and antifungal activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes(Basel), 2017,8:265
[21] Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463:178-183
doi: 10.1038/nature08670 pmid: 20075913
[22] Severin A J, Woody J L, Bolon Y T, Joseph B, Diers B W, Farmer A D, Muehlbauer G J, Nelson R T, Grant D, Specht J E, Graham M A, Cannon S B, May G D, Vance C P, Shoemaker R C . RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol, 2010,10:160
doi: 10.1186/1471-2229-10-160 pmid: 3017786
[23] Van Wyk S G, Du Plessis M, Cullis C A, Kunert K J, Vorster B J . Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC Plant Biol, 2014,14:294
doi: 10.1186/s12870-014-0294-3
[24] Yuan S, Li R, Wang L, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Zhang X, Chen S, Yang Z, Qiu D, Zhou X . Search for nodulation and nodule development-related cystatin genes in the genome of soybean (Glycine max). Front Plant Sci, 2016,7:1595
[25] Ke D X, Li X Y, Han Y P, Cheng L, Yuan H Y, Wang L . ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus. Plant Physiol Biochem, 2016,108:488-498
doi: 10.1016/j.plaphy.2016.08.015 pmid: 27592173
[26] 柯丹霞, 李祥永, 彭昆鹏, 韩雅彭 . 百脉根Rac1基因启动子的克隆与表达分析. 信阳师范学院学报(自然科学版), 2018,31:46-51
Ke D X, Li X Y, Peng K P, Han Y P . Cloning and expression analysis of the promoter region of Rac1 gene of Lotus japonicus. J Xinyang Normal Univ (Nat Sci Edn), 2018,31:46-51 (in Chinese with English abstract)
[27] Li Y, Zhou L, Li Y, Chen D, Tan X, Lei L, Zhou J . A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol, 2008,180:185-192
[28] Sheokand S, Dahiya P, Vincent J L, Brewin N J . Modified expression of cysteine protease affects seed germination, vegetative growth and nodule development in transgenic lines of Medicago truncatula. Plant Sci, 2005,169:966-975
doi: 10.1016/j.plantsci.2005.07.003
[29] Vincent J L, Brewin N J . Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiol, 2000,123:521-530
doi: 10.1104/pp.123.2.521
[30] Pfeiffer N E, Torres C M, Wagner F W . Proteolytic activity in soybean root nodules: activity in host cell cytosol and bacteroids throughout physiological development and senescence. Plant Physiol, 1983,71:797-802
[31] Zhang X, Liu S, Takano T . Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol, 2008,68:131-143
[32] Quain M D, Makgopa M E, Cooper J W, Kunert K J, Foyer C H . Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry, 2015,112:179-187
[33] 柯丹霞, 李祥永 . 结瘤信号途径中相关调控蛋白的研究进展. 信阳师范学院学报(自然科学版), 2015,28:621-626
doi: 10.3969/j.issn.1003-0972.2015.04.038
Ke D X, Li X Y . Research progress of key regulatory proteins in nodulation pathway. J Xinyang Normal Univ (Nat Sci Edn), 2015,28:621-626 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0972.2015.04.038
[34] Ke D X, Fang Q, Chen C F, Zhu H, Chen T, Chang X J, Yuan S L, Kang H, Ma L, Hong Z L, Zhang Z M . Small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. Plant Physiol, 2012,159:131-143
[1] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[2] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[3] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[4] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[5] CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049.
[6] Dan-Xia KE,Kun-Peng PENG,Meng-Ke ZHANG,Yan JIA,Jing-Jing WANG. Cloning and Salt Resistance Function Identification of GmHDL57 Gene from Glycine max [J]. Acta Agronomica Sinica, 2018, 44(9): 1347-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!