Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1185-1195.doi: 10.3724/SP.J.1006.2018.01185

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis of Plant Height and Stem Diameter in Common Buckwheat

Ying-Shuang LI1,**(),Dan HU3,**,Jiao NIE1,Ke-Hui HUANG1,Yu-Ke ZHANG1,Yuan-Li ZHANG1,Heng-Zhi SHE1,Xiao-Mei FANG1,2,Ren-Wu RUAN1,2,Ze-Lin YI1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
    2 Innovation Team of Chongqing Buckwheat Industry System, Chongqing 400716, China
    3 Seed Administration Station of Gansu, Lanzhou 730000, Gansu, China
  • Received:2017-11-09 Accepted:2018-04-11 Online:2018-08-10 Published:2018-06-11
  • Contact: Ying-Shuang LI,Dan HU,Ze-Lin YI E-mail:775903522@qq.com;yzlin1969@126.com
  • Supported by:
    the Fundamental Research Funds for the Central Universities(XDJK2017D071);Chongqing Buckwheat Industry System Innovation Team(CQCYT2017001);Integration and Demonstration Promotion for the Buckwheat Lodging-resistant Cultivation Technique(cstc2017shms-xdny80024);Chinese Postdoctoral Science Foundation(2017M622944);Chongqing Postdoctoral Science Foundation(Xm2017176)

Abstract:

Common buckwheat (Fagopyrum esculentum M.) is susceptible to lodging, and plant height and stem diameter are recognized as important traits for lodging resistance. In this study, we developed the Pl, P2, Fl, F2, Bl, and B2 populations from the reciprocal crosses between Youqiao 2 (YQ2, lodging-resistance) and Ukraine daliqiao (UD, lodging-susceptible) and analyzed the genetic effects of plant height and stem diameter. The heredity of both traits optimally fitted to the genetic model for two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance effects. For plant height in the orthogonal combination, additive effects of both two major genes were -1.39 and the dominant effects were -6.59 and -7.91. Heritability values of the major genes in B1, B2, and F2 were 45.73%, 63.49%, and 81.12%, and those of polygenes were 27.41%, 0.95%, and 0, respectively. For plant height in the back cross, additive effects of both two major genes were -1.63 and the dominant effects were -7.03 and -4.19, respectively. Heritability values of the major genes in B1, B2, and F2 were 41.51%, 66.18%, and 81.81%, and those of polygenes were 11.19%, 0, and 0, respectively. For stem diameter in the orthogonal combination, the two major genes had 0.03 and 0.03 of additive effect and -0.50 and -0.08 of dominant effect. Heritability values of the major genes in B1, B2 and F2 were 37.26%, 48.80%, and 72.10%, and those of polygenes were 11.18%, 0, and 0, respectively. For stem diameter in the back cross, the two major genes possessed -0.15 and -0.15 of additive effect and -0.30 and -0.16 of dominant effect. The estimated heritability values in B1, B2, and F2 were 76.22%, 47.12%, and 82.51%, respectively, for the major genes and 0, 14.53%, and 0, respectively, for the polygenes. These results suggest that plant height can be selected in early generations because the heritability of major genes plus polygenes was larger than 80%, whereas proper cultivation practice may enhance lodging resistance of buckwheat because the heritability of major genes plus polygenes was lower than 80%.

Key words: common buckwheat, plant height, stem diameter, quantitative trait, genetic analysis

Table 1

Plant height and stem diameter in the six generations from reciprocal combinations"

亲本组合
Parent
combination
世代
Generation
株数
No. of plants
株高 Plant height 茎粗 Stem diameter
平均值±标准差
Mean±SD (cm)
变异系数
CV (%)
平均值±标准差
Mean±SD (mm)
变异系数
CV (%)
亲本 Parent P1 25 106.08±8.05 7.59 6.10±0.94 6.49
P2 25 75.32±6.01 7.98 4.80±0.59 8.14
P1 × P2 F1 28 93.04±8.64 9.29 5.30±0.70 7.57
B1 153 100.12±10.21 10.20 5.99±0.91 6.58
B2 165 84.87±8.90 10.49 6.02±0.82 7.34
F2 274 94.67±10.23 10.81 6.50±1.00 6.50
P2 × P1 F1 28 87.54±6.62 7.56 5.10±0.64 7.97
B1 136 87.04±5.96 6.85 5.10±0.70 7.29
B2 133 91.51±6.36 6.95 5.40±0.70 7.71
F2 303 90.17±7.61 8.44 5.73±0.75 7.64

Supplementary fig. 1

Frequency distributions of plant height in six generations derived from orthogonal cross"

Supplementary fig. 2

Frequency distributions of plant height in six generations derived from back cross"

Supplementary fig. 3

Frequency distributions of stem diameter in six generations derived from orthogonal cross"

Supplementary fig. 4

Frequency distributions of stem diameter in six generations derived from back cross"

Supplementary table 1

Maximum log likelihood estimated value and AIC value for plant height and stem diameter in reciprocal crosses"

模型
Model
模型含义
Implication of model
P1 × P2 P2 × P1
株高 Plant height 茎粗 Stem diameter 株高 Plant height 茎粗 Stem diameter
极大对数似然函数值 log max likelihood value
A-1 1MG-AD -2471.03 -911.79 -2221.06 -831.34
A-2 1MG-A -2471.27 -913.18 -2220.93 -835.71
A-3 1MG-EAD -2517.11 -912.04 -2252.92 -831.55
A-4 1MG-AEND -2542.66 -907.83 -2287.76 -841.14
B-1 2MG-ADI -2462.85 -854.59 -2190.52 -814.82
B-2 2MG-AD -2466.77 -910.59 -2221.34 -832.65
B-3 2MG-A -2524.10 -934.20 -2281.29 -874.56
B-4 2MG-EA -2466.05 -913.57 -2213.12 -837.46
B-5 2MG-AED -2499.91 -911.93 -2230.42 -833.39
B-6 2MG-EEAD -2499.91 -911.93 -2230.42 -833.39
C-0 PG-ADI -2473.89 -859.01 -2175.84 -809.55
C-1 PG-AD -2467.03 -905.21 -2214.12 -838.68
D-0 MX1-AD-ADI -2461.91 -853.03 -2174.53 -803.64
D-1 MX1-AD-AD -2466.94 -906.60 -2215.13 -838.79
D-2 MX1-A-AD -2461.37 -893.08 -2214.78 -825.99
D-3 MX1-EAD-AD -2466.32 -908.12 -2215.29 -838.44
D-4 MX1-AEND-AD -2466.40 -905.01 -2215.31 -837.98
E-0 MX2-ADI-ADI -2454.25 -843.30 -2174.53 -803.63
E-1 MX2-ADI-AD -2450.50 -844.42 -2161.64 -791.16
E-2 MX2-AD-AD -2466.33 -908.12 -2215.29 -838.44
E-3 MX2-A-AD -2467.93 -906.89 -2214.68 -930.84
E-4 MX2-EA-AD -2466.25 -908.12 -2215.29 -838.44
E-5 MX2-AED-AD -2466.32 -908.12 -2215.29 -838.44
E-6 MX2-EEAD-AD -2466.32 -908.12 -2215.29 -838.44
AIC值 AIC value
A-1 1MG-AD 4950.06 1831.59 4450.11 1670.67
A-2 1MG-A 4948.55 1832.36 4447.86 1677.43
A-3 1MG-EAD 5040.22 1830.08 4511.84 1669.09
A-4 1MG-AEND 5091.33 1821.66 4581.52 1688.29
B-1 2MG-ADI 4945.70 1729.19 4401.03 1649.64
B-2 2MG-AD 4945.53 1833.19 4454.67 1677.30
B-3 2MG-A 5056.20 1876.39 4570.58 1757.12
B-4 2MG-EA 4938.09 1833.14 4432.25 1680.93
B-5 2MG-AED 5007.81 1831.85 4468.85 1674.77
模型
Model
模型含义
Implication of model
P1 × P2 P2 × P1
株高 Plant height 茎粗 Stem diameter 株高 Plant height 茎粗 Stem diameter
B-6 2MG-EEAD 5005.81 1829.85 4466.85 1672.78
C-0 PG-ADI 4967.78 1738.03 4371.69 1639.09
C-1 PG-AD 4948.06 1824.42 4442.24 1691.36
D-0 MX1-AD-ADI 4947.82 1730.07 4373.05 1631.28
D-1 MX1-AD-AD 4951.88 1831.20 4448.26 1695.57
D-2 MX1-A-AD 4938.73 1802.15 4445.57 1667.97
D-3 MX1-EAD-AD 4948.64 1832.24 4446.58 1692.87
D-4 MX1-AEND-AD 4948.81 1826.03 4446.63 1691.95
E-0 MX2-ADI-ADI 4944.51 1722.60 4385.05 1643.27
E-1 MX2-ADI-AD 4931.01 1718.83 4353.28 1612.32
E-2 MX2-AD-AD 4954.65 1838.24 4452.58 1698.87
E-3 MX2-A-AD 4953.87 1831.77 4447.37 1879.68
E-4 MX2-EA-AD 4948.50 1832.24 4446.58 1692.87
E-5 MX2-AED-AD 4950.64 1834.24 4448.58 1694.87
E-6 MX2-EEAD-AD 4948.65 1832.24 4446.58 1692.87

Table 2

Test for goodness-of-fit of selected genetic model for plant height and stem diameter in reciprocal crosses"

模型含义
Implication of model
株高 Plant height 茎粗 Stem diameter
模型
Model
U12 U22 U32 nW2 Dn 模型
Model
U12 U22 U32 nW2 Dn
P1 × P2
2MG-EA B-4 0 0 0 0 0 B-1 0 0 2 0 0
MX1-A-AD D-2 0 0 0 0 0 E-0 0 0 0 0 0
MX2-ADI-AD E-1 0 0 0 0 0 E-1 0 0 0 0 0
P2 × P1
2MG-EA C-0 0 2 0 1 0 C-0 1 2 0 2 0
MX1-A-AD D-0 0 0 0 0 0 D-0 0 0 0 0 0
MX2-ADI-AD E-1 0 0 0 0 0 E-1 0 0 0 0 0

Table 3

Estimates of first order genetic parameters for plant height and stem diameter in reciprocal crosses"

遗传参数
Genetic parameter
P1 × P2 P2 × P1
株高 Plant height 茎粗 Stem diameter 株高 Plant height 茎粗 Stem diameter
m 102.81 7.01 97.10 6.53
da -1.39 0.03 -1.63 -0.15
db -1.39 0.03 -1.63 -0.15
ha -6.59 -0.50 -7.03 -0.30
hb -7.91 -0.08 -4.19 -0.16
i -12.06 -1.55 -6.30 -1.13
jab 8.44 0.04 6.82 -0.27
jba -9.48 -0.41 10.88 0.86
l 10.86 -0.63 8.06 0.07
[d] 18.13 0.31 -11.46 -0.32
[h] -6.03 -0.23 -6.24 -1.31
ha/da 4.73 -15.53 4.31 2.04
hb/db 5.68 -2.35 2.57 1.08

Table 4

Estimates of second order genetic parameters for plant height and stem diameter in reciprocal crosses"

组合
Combination
遗传参数
Genetic parameter
B1 B2 F2
株高
Plant height
茎粗
Stem diameter
株高
Plant height
茎粗
Stem diameter
株高
Plant height
茎粗
Stem diameter
P1 × P2 σp2 104.83 0.82 79.15 0.76 113.91 1.16
σmg2 47.94 0.31 50.25 0.33 85.76 0.74
σpg2 28.74 0.09 0.75 0 0 0
σe2 28.15 0.42 28.15 0.42 28.15 0.42
hmg2 (%) 45.73 37.26 63.49 48.80 81.12 72.10
hpg2 (%) 27.41 11.18 0.95 0 0 0
P2 × P1 σp2 35.55 0.63 43.58 0.56 64.19 0.68
σmg2 14.76 0.42 26.76 0.26 47.37 0.47
σpg2 3.98 0 0 0.08 0 0
σe2 16.82 0.21 16.82 0.21 16.82 0.21
hmg2 (%) 41.51 76.22 66.18 47.12 81.81 82.51
hpg2 (%) 11.19 0 0 14.53 0 0
[1] Gondola I, Papp P . Origin, geographical distribution and polygenic relationship of common buckwheat (Fagopyrum esculentum Moench.). Eur Plant Sci Biotechnol, 2010,4:17-33
[2] Alamprese C, Casiraghi E, Pagani M A . Development of gluten-free fresh egg pasta analogues containing buckwheat. Eur Food Res Technol, 2007,225:205-213
doi: 10.1007/s00217-006-0405-y
[3] Awatsuhara R, Harada K, Maeda T . Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin. Mol Med Rep, 2010,3:121-125
doi: 10.3892/mmr_00000228 pmid: 21472210
[4] Griffith J Q, Couch J F, Lindauer M A . Effect of rutin on increased capillary fragility in man. Exp Biol Med, 1944,55:228-229
doi: 10.3181/00379727-55-14532
[5] Jiang P, Burczynski F, Campbell C, Pierce G, Austria J A, Briggs C J . Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res Int, 2007,40:356-364
[6] Wieslander G, Fabjan N, Vogrincic M, Kreft I, Janson C, Spetz-Nystrom U . Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: a double blind crossover study in day-care centre staffs. Tohoku J Exp Med, 2011,225:123-130
doi: 10.1620/tjem.225.123
[7] 何健, 张国治, 张虹, 次仁欧珠 . 荞麦营养成分的检测及分析. 河南农业大学学报, 2002,36:302-304
doi: 10.3969/j.issn.1000-2340.2002.03.025
He J, Zhang G Z, Zhang H , Ci-Ren-Ou-Zhu. Determination and analysis of nutrient ingredients of buckwheat. J Henan Agric Univ, 2002,36:302-304 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2340.2002.03.025
[8] 杨海霞, 赵丽芹, 付媛, 候文娟, 张美莉 . 甜荞主要贮藏蛋白的分离纯化及功能特性研究. 中国食品学报, 2009,9(1):72-76
Yang H X, Zhao L Q, Fu Y, Hou W J, Zhang M L . Extraction, purification and functional properties of main protein from buckwheat (Fagopyrum esculentum Moench) seeds. J Chin Inst Food Sci Technol, 2009,9(1):72-76 (in Chinese with English abstract)
[9] Koyama M, Nakamura C, Nakamura K . Changes in phenols contents from buckwheat sprouts during growth stage. J Food Sci Technol, 2013,50:86-93
doi: 10.1007/s13197-011-0316-1 pmid: 24425891
[10] Hagiwara M, Izusawa H, Inoue N, Matano T . Varietal differences of shoot growth characters related to lodging in Tartary buckwheat. Fagopyrum, 1999,16:67-72
[11] 郭志利, 孙常青 . 北方旱地荞麦抗倒栽培技术研究. 杂粮作物, 2007,27:364-366
doi: 10.3969/j.issn.2095-0896.2007.05.018
Guo Z L, Sun C Q . Study on resistance cultivation techniques of buckwheat in Northern Dryland. Rain Fed Crops, 2007,27:364-366 (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-0896.2007.05.018
[12] Dunn G J, Briggs K G . Variation in culm anatomy among barley cultivars differing in lodging resistance. Can J Bot, 2011,67:1838-1843
doi: 10.1139/b89-232
[13] Yoshida S . Physiological aspects of grain yield. Annu Rev Plant Physiol, 2003,23:437-464
doi: 10.1146/annurev.pp.23.060172.002253
[14] 罗茂春, 田翠婷, 李晓娟, 林金星 . 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007,27:2346-2353
doi: 10.3321/j.issn:1000-4025.2007.11.034
Luo M C, Tian C T, Li X J, Lin J X . Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreal-Occident Sin, 2007,27:2346-2353 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4025.2007.11.034
[15] 杨惠杰, 杨仁崔, 李义珍, 姜照伟, 郑景生 . 水稻茎秆性状与抗倒性的关系. 福建农业学报, 2000,15(2):1-7
Yang H J, Yang R C, Li Y Z, Jiang Z W, Zheng J S . Relationship between culm traits and lodging resistance of rice cultivars. Fujian J Agric Sci, 2000,15(2):1-7 (in Chinese with English abstract)
[16] 杨守仁, 张龙步, 王进民 . 水稻理想株形育种的理论和方法初论. 中国农业科学, 1984, ( 3):6-13
Yang S R, Zhang L B, Wang J M . The theory and method of ideal plant morphology in rice breeding. Sci Agric Sin, 1984, ( 3):6-13 (in Chinese with English abstract)
[17] Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Li Y, Yi Z L . Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Prod Sci, 2015,18:218-227
doi: 10.1626/pps.18.218
[18] 刘星贝, 吴东倩, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 袁晓辉, 易泽林 . 喷施烯效唑对甜荞茎秆抗倒性能及产量的影响. 中国农业科学, 2015,48:4903-4915
Liu X B, Wu D Q, Wang C, Hu D, Yang H, She H Z, Ruan R W, Yuan X H, Yi Z L . Effects of spraying uniconazole on lodging resistance of culm and yield in common buckwheat. Sci Agric Sin, 2015,48:4903-4915 (in Chinese with English abstract)
[19] Hu D, Liu X B, She H Z, Gao Z, Ruan R W, Wu D Q, Yi Z L . The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum. Biol Plant, 2017,61:138-146
[20] 汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林 . 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014,40:1846-1856
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Lin T T, He P L, Li Y, Yi Z L . Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agron Sin, 2014,40:1846-1856 (in Chinese with English abstract)
[21] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003
Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003 ( in Chinese)
[22] 朱世杨, 郭媛, 洪德林 . 水稻种子抗老化遗传分析. 遗传, 2008,30:217-224
doi: 10.3321/j.issn:0253-9772.2008.02.016
Zhu S Y, Guo Y, Hong D L . Genetic analysis on aging-resistant in rice seed. Hereditas ( Beijing), 2008,30:217-224 (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-9772.2008.02.016
[23] 袁有禄, 张天真, 郭旺珍 , John Y, Russell J K. 棉花高品质纤维性状的主基因与多基因遗传分析. 遗传学报, 2002,29:827-834
Yuan Y L, Zhang T Z, Guo W Z, John Y, Russell J K . Major-polygene effect analysis of super quality fiber properties in upland cotton (G. hirsutum L.). Acta Genet Sin, 2002,29:827-834 (in Chinese with English abstract)
[24] 兰海, 余月, 王凤格, 潘光堂, 赵久然, 李新海, 荣廷昭 . 玉米种子休眠性数量遗传体系的判别. 玉米科学, 2007,15(2):5-8
doi: 10.3969/j.issn.1005-0906.2007.02.002
Lan H, Yu Y, Wang F G, Pan G T, Zhao J R, Li X H, Rong T Z . Detection quantitative inheritance system of seed dormancy in maize (Zea mays L.). J Maize Sci, 2007,15(2):5-8 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-0906.2007.02.002
[25] 张立平, 赵昌平, 单福华, 张凤廷, 叶志杰 . 小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析. 作物学报, 2007,33:1553-1557
doi: 10.3321/j.issn:0496-3490.2007.09.025
Zhang L P, Zhao C P, Shan F H, Zhang F T, Ye Z J . The mixed genetic analysis of photoperiod-temperature sensitive male sterility of BS210 in wheat. Acta Agron Sin, 2007,33:1553-1557 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.09.025
[26] 刘莹, 盖钧镒, 吕慧能, 王永军, 陈受宜 . 大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位. 遗传学报, 2005,32:855-863
doi: 10.3969/j.issn.1671-8631.2012.05.014
Liu Y, Gai J Y, Lyu H N, Wang Y J, Chen S Y . Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr.). Acta Genet Sin, 2005,32:855-863 (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-8631.2012.05.014
[27] Zhang X Y, Han S Y, Tang F S, Xu J, Liu H, Yan M, Dong W Z, Huang B Y, Zhu S J . Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Afr J Biotechnol, 2013,10:7126-7130
[28] 顾慧, 戚存扣 . 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008,34:376-381
doi: 10.3321/j.issn:0496-3490.2008.03.005
Gu H, Qi C K . Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008,34:376-381 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2008.03.005
[29] 周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣 . 油菜半矮杆新品系10D130株型性状的遗传分析. 作物学报, 2013,39:207-215
doi: 10.3724/SP.J.1006.2013.00207
Zhou Q Y, Li J Q, Cui C, Bu H D, Yin T, Yan Y H, Li J N, Zhang Z S . Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013,39:207-215 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00207
[30] 田露申, 牛应泽, 余青青, 郭世星, 柳丽 . 甘蓝型油菜白花性状的主基因+多基因遗传分析. 中国农业科学, 2009,42:3987-3995
Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L . Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agric Sin, 2009,42:3987-3995 (in Chinese with English abstract)
[31] Akaike H. On entropy maximum principles. In: Krishnaiag G, ed. Applications of Statistics. Amsterdam, Netherlands: North Holland Publishing, 1977. pp 27-41
[32] 陈桂华, 邓化冰, 张桂莲, 唐文帮, 黄璜 . 水稻茎秆性状与抗倒性的关系及配合力分析. 中国农业科学, 2016,49:407-417
Chen G H, Deng H B, Zhang G L, Tang W B, Huang H . The correlation of stem characters and lodging resistance and combining ability analysis in rice. Sci Agric Sin, 2016,49:407-417 (in Chinese with English abstract)
[33] 朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣 . 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006,26(1):87-92
doi: 10.7606/j.issn.1009-1041.2006.01.024
Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X . Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality. J Triticeae Crops, 2006,26(1):87-92 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2006.01.024
[34] 丰光, 景希强, 李妍妍, 王亮, 黄长玲 . 玉米茎秆性状与倒伏性的相关和通径分析. 华北农学报, 2010,25(增刊):72-74
Feng G, Jing X Q, Li Y Y, Wang L, Huang C L . Correlation and path analysis of lodging resistance with maize stem characters. Acta Agric Boreali-Sin, 2010,25(suppl):72-74 (in Chinese with English abstract)
[35] 刘星贝, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 吴东倩, 易泽林 . 烯效唑干拌种对甜荞茎秆抗倒性能的影响. 作物学报, 2016,42:93-103
Liu X B, Wang C, Hu D, Yang H, She H Z, Ruan R W, Wu D Q, Yi Z L . Effects of seed dressing with uniconazole powder on lodging resistance of culm in common buckwheat. Acta Agron Sin, 2016,42:93-103 (in Chinese with English abstract)
[36] 包和平, 李颖, 李春成 . 高淀粉玉米“郑单958”主要农艺性状主基因+多基因遗传分析. 吉林农业大学学报, 2010,32:245-248
Bao H P, Li Y, Li C C . Inheritance analysis of main agronomic traits of major genes + poly-genes of high-starch corn Zhengdan 958. J Jilin Agric Univ, 2010,32:245-248 (in Chinese with English abstract)
[37] 张倩 . 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位. 西南大学硕士学位论文, 重庆, 2013
Zhang Q . Genetic Effects Analysis and QTL Mapping of Major Plant-Type Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2013 ( in Chinese with English abstract)
[38] 王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜 . 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008,41:1274-1282
Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y . Inheritance and QTL mapping of tofu and soymilk output in soybean. Sci Agric Sin, 2008,41:1274-1282 (in Chinese with English abstract)
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[5] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[9] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[10] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[11] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[12] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[13] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[14] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[15] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!