Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1579-1591.doi: 10.3724/SP.J.1006.2018.01579

• REVIEW •     Next Articles

Research Progress on Bioactive Components of Quinoa (Chenopodium quinoa Willd.)

Yi-Chen HU1,Gang ZHAO1,*(),Pei-You QIN2,Yan-Fen CHENG3,Ya-Na CAO1,4,Liang ZOU1,Gui-Xing REN2,*()   

  1. 1 Chengdu University / Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu 610106, Sichuan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Chengdu University of Traditional Chinese Medicine, College of Pharmacy, Chengdu 611137, Sichuan, China
    4 College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
  • Received:2018-05-18 Accepted:2018-08-20 Online:2018-11-12 Published:2018-09-07
  • Contact: Gang ZHAO,Gui-Xing REN E-mail:zhaogang@cdu.edu.cn;rengguixing@caas.cn
  • Supported by:
    supported by the China Agriculture Research System(CARS-08-02A);the Education Department Research Project of Sichuan Province(17ZB0113)

Abstract:

Quinoa (Chenopodium quinoa Willd.), a dicotyledon belonging to Amaranthaceae family, has been regarded as a functional healthy food because of its excellent nutritional characteristics. Quinoa has been most widely commercialized, consumed and also studied for their high contents of vitamin, essential amino acids, minerals and bioactive compounds. Indeed, the presence of these bioactive compounds in quinoa seeds well leads to their being considered a ‘‘functional food”. The bioactive compounds mainly consist of polyphenolic compounds (phenolic acids, flavonoids, and tannins), saponins, polysaccharides, polypeptides, ecdysone and aliphatic acids, and are confirmed as the main constituents of quinoa secondary metabolite, with activities in antioxidant, antidiabetics, anti-hyperlipidemia, anti-inflammatory, enhancing immune, preventing cardiovascular diseases and antibacterial. The popularity of quinoa has increased in recent years due to the claims of benefits to health and superfood qualities. This paper reviews the function of bioactive compounds in quinoa, and its research and development of related products in future. It is intended to provide important references to the quinoa industry, food health and pharmaceutical research and development.

Key words: quinoa, bioactive components, polyphenol, saponin, polysaccharide

Table 1

Concentration of individual free phenolic compounds in white, red and black quinoa species measured by HPLC-DAD-MS [10] (mg kg-1)"

编号
Code
自由酚类化合物
Free phenolic compounds
白色藜麦籽粒
White quinoa
红色藜麦籽粒
Red quinoa
黑色藜麦籽粒
Black quinoa
1 3,4-二羟基苯甲酸 3,4-dihydroxybenzoic acid Not detected 29.82±0.67 47.38±1.39
2 对香豆酸 4-葡萄糖苷 p-coumaric acid 4-glucoside Not detected 19.34±1.21 31.31±1.88
3 对羟基苯甲酸 p-hydroxybenzoic acid 15.84±0.72 17.24±0.49 16.97±0.31
4 香草酸 4-葡萄糖苷 Vanillic acid 4-glucoside 23.09±1.75 24.62±1.12 27.39±1.09
5 2,5-二羟基苯甲酸 2,5-dihydroxybenzoic acid 0.59±0.06 0.73±0.13 0.28±0.04
6 咖啡酸 Caffeic acid 4.39±0.02 4.94±0.03 19.61±0.02
7 香草酸 Vanillic acid 63.45±2.22 70.02±1.71 39.03±2.04
8 表没食子儿茶素 Epigallocatechin 1.55±0.03 2.71±0.04 3.21±0.04
9 表儿茶素 Epicatechin 4.62±0.12 3.89±0.11 4.23±0.18
10 香草醛 Vanillin 4.19±0.09 6.65±0.24 8.39±0.39
11 金合欢素/单甲醚/芹黄素-7-甲醚
Acacetin/questin/apigenin-7-methylether
10.08±0.73 13.33±0.48 16.56±0.55
12 对香豆酸 p-coumaric acid 13.01±0.58 22.73±0.54 29.52±1.06
13 阿魏酸 Ferulic acid 37.52±2.61 58.41±1.82 47.21±1.77
编号
Code
自由酚类化合物
Free phenolic compounds
白色藜麦籽粒
White quinoa
红色藜麦籽粒
Red quinoa
黑色藜麦籽粒
Black quinoa
14 阿魏酸4-葡萄糖苷 Ferulic acid 4-glucoside 131.97±2.26 151.65±3.17 161.39±0.64
15 异阿魏酸 Isoferulic acid 8.21±0.26 19.44±0.62 12.35±0.49
16 山奈酚3,7-二鼠李糖苷 Kaempferol 3,7-dirhamnoside 20.61±0.94 27.00±1.14 29.41±0.52
17 山奈酚3-半乳糖苷 Kaempferol 3-galactoside 24.01±1.42 28.78±1.77 23.32±0.81
18 槲皮素-3-芸香糖苷 Quercetin-3-rutinoside 57.10±2.76 71.04±1.99 57.63±1.47
19 山奈酚3-葡萄糖苷 Kaempferol 3-glucoside 13.29±1.33 16.42±1.58 24.08±1.69
20 槲皮素3-阿拉伯糖苷 Quercetin 3-arabinoside 24.97±1.19 26.46±1.28 65.79±0.71
21 槲皮素 Quercetin 5.27±0.82 11.82±0.41 12.99±0.11
22 山奈酚 Kaempferol 2.56±0.08 1.18±0.08 1.58±0.07
23 鹰嘴豆芽素 Biochanin A 0.67±0.27 6.44±0.45 2.42±0.79
总酚类指数 Total phenols index (TPI) 466.99±3.27 634.66±5.87 682.05±4.73

Table 2

Contents of soluble phenolic acid and flavonoid in quinoa, Ka?iwa and kiwicha grains [20] (mg 100 g-1)"

类别
Type
藜麦
Quinoa
苍白茎藜
Ka?iwa
尾穗苋
Kiwicha
可溶性酚酸
Soluble phenolic acids
咖啡酸 Caffeic acid 0.7±0.4 3±2 0.9±0.2
阿魏酸 Ferulic acid 15±3 23±7 6.9±1.0
对香豆酸 p-coumaric acid 8±7 1.0±0.5 0.89±0.11
对羟基苯甲酸 p-OH-benzoic acid 2.9±0.6 1.7±0.2 3.0±0.7
香草酸 Vanillic acid 11±2 4±2 5.4±1.3
黄酮
Flavonoids
杨梅酮 Myricetin 0.5±0.5 0.04±0.08 Not detected
槲皮素 Quercetin 36±13 60±30 Not detected
山奈酚 Kaempferol 20±20 2±3 Not detected
异鼠李素 Isorhamnetin 0.4±0.7 30±20 Not detected

Table 3

Structure of 20 kinds of triterpenoid saponins[29]"

序号
Code
化合物
Compound
苷元
Aglycone
R#
1 3β-[(O-β-D-吡喃葡萄糖基-(1→3)-α-L-阿拉伯吡喃基)氧]-23-氧-
齐墩果-12-en-28-油酸 β-D-葡萄吡喃糖苷
3β-[(O-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl)oxy]-23-
oxo-olean-12-en-28-oic acid β-D-glucopyranoside
I β-D-Glc(1→3)-α-L-Ara
2 3β-[(O-β-D-吡喃葡萄糖基-(1→3)-α-L-阿拉伯吡喃基)氧]-27-
氧-齐墩果-12-en-28-油酸 β-D-葡萄吡喃糖苷
3β-[(O-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl)oxy]-27-
oxo-olean-12-en-28-oic acid β-D-glucopyranoside
II β-D-Glc(1→3)-α-L-Ara
3 3-O-α-L-阿拉伯吡喃基 脱氧美商陆酸 28-O-β-D-吡喃葡萄糖酯
3-O-α-L-arabinopyranosyl serjanic acid 28-O-β-D-glucopyranosyl ester
III α-L-Ara
4 3-O-β-D-葡萄糖醛酸 脱氧美商陆酸 28-O-β-D-吡喃葡萄糖酯
3-O-β-D-glucuronopyranosyl serjanic acid 28-O-β-D-glucopyranosyl ester
III β-D-GlcA
序号
Code
化合物
Compound
苷元
Aglycone
R#
5 3-O-β-D-吡喃葡萄糖基-(1→2)-β-D-吡喃葡萄糖基-(1→3)-α-L-阿拉伯吡喃基
脱氧美商陆酸 28-O-β-D-吡喃葡萄糖酯
3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl serjanic acid 28-O-β-D-glucopyranosyl ester
III β-D-Glc(1→2)-β-D-
Glc(1→3)-α-L-Ara
6 3-O-β-D-吡喃葡萄糖基-(1→3)-α-L-阿拉伯吡喃基 脱氧美商陆酸28-O-β-D-
吡喃葡萄糖酯
3-O-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosylserjanic
acid 28-O-β-D-glucopyranosyl ester
III β-D-Glc(1→3)-α-L-Ara
7 6-{[4,4,6a,6b,11,11,14b-七乙基-8a-({[3,4,5-三羟基-6-(羟甲基)氧化-2-yl]氧}
羰基)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-
yl]氧}-3,5-二羟基-4-[(3,4,5-三羟基氧烷-2-yl)氧]环氧乙烷-2-羧酸
6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2- yl]oxy}carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylicacid
IV β-D-Xyl(1→3)-β-D-GlcA
8 藜麦皂苷7 Quinoa saponin 7 IV β-D-Glc(1→2)-β-D-
Glc(1→3)-α-L-Ara
9 3-O-β-D-吡喃葡萄糖基-(1→3)-α-L-阿拉伯吡喃基 齐墩果酸 28-O-β-D-吡喃葡萄糖酯
3-O-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl oleanolic acid 28-O-β-D-glucop yranosyl ester
IV β-D-Glc(1→3)-α-L-Ara
10 竹节参皂苷 IVa Chikusetsusaponin IVa IV β-D-GlcA
11 藜麦皂苷4 Quinoa saponin 4 V β-D-Glc(1→3)-α-L-Ara
12 藜麦皂苷3 Quinoa saponin 3 V α-L-Ara
13 藜麦皂苷5 Quinoa saponin 5 V β-D-Glc(1→3)-β-D-Gal
14 藜麦皂苷8 Quinoa saponin 8 V β-D-Glc(1→2)-β-D-
Glc(1→3)-α-L-Ara
15 3-O-β-D-吡喃葡萄糖基-(1→4)-O-β-D-吡喃葡萄糖基-(1→4)-O-β-D-吡喃葡萄糖基 商陆皂苷酸 28-O-β-D-吡喃葡萄糖酯
3-O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranosyl phytolaccagenic acid 28-O-β-D-glucopyranosyl ester
V β-D-Glc(1→4)-β-D-
Glc(1→4)-β-D-Glc
16 藜麦皂苷2 Quinoa saponin 2 VI β-D-Glc(1→3)-β-D-Gal
17 常春藤皂苷F Hedera nepalensis saponin F VI α-L-Ara
18 藜麦皂苷9 Quinoa saponin 9 VI β-D-GlcA
19 藜麦皂苷1 Quinoa saponin 1 VI β-D-Glc(1→3)-α-L-Ara
20 3-O-β-D-吡喃葡萄糖基-(1→3)-α-L-阿拉伯吡喃基3β,23,30-三羟基烯烃-12-en-28-油酸 28-O-β-D-吡喃葡萄糖酯
3-O-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranosyl 3β,23,30-trihydroxy olean- 12-en-28-oic acid 28-O-β-D-glucopyranosyl ester
VII β-D-Glc(1→3)-α-L-Ara

Fig. 1

Seven kinds of aglycones in triterpenoid saponins"

Table 4

Average concentration saponins in four saponins fractions (Q30, Q50, Q50 and Q90)[30](g kg-1)"

Table 5

Approximate average composition of quinoa grains compared with cereals [39,40] (g 100 g-1)"

名称
Name
脂肪
Lipid
蛋白质
Protein
膳食纤维
Dietary fiber
碳水化合物
Carbohydrate
藜麦 Quinoa 6.07 14.12 7.0 64.16
水稻 Rice 0.55 6.81 2.8 81.68
大麦 Barley 1.30 9.91 15.6 77.72
小麦 Wheat 2.47 13.68 10.7 71.13
玉米 Maize 4.74 9.42 7.3 74.26
高粱 Sorghum 3.46 10.62 6.7 72.09
粟 Foxtail millet 3.06 10.29 4.25 69.95
[1] 任贵兴, 杨修仕, 么杨 . 中国藜麦产业现状. 作物杂志, 2015, ( 5):1-5
Ren G X, Yang X S, Yao Y . Current situation of quinoa industry in China. Crops, 2015, ( 5):1-5 (in Chinese with English abstract)
[2] APG ( Angiosperm Phylogeny Group ). An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard, 1998,85:531-553
doi: 10.2307/2992015
[3] 任贵兴, 叶全宝 . 藜麦生产与应用. 北京: 科学出版社, 2013. pp 49-50
Ren G X , Ye Q B . Quinoa Botany, Production and Uses. Beijing: Science Press, 2013. pp 49-50(in Chinese)
[4] 卢宇, 张美莉 . 藜麦生物活性物质研究进展. 农产品加工, 2015, ( 10):58-62
Lu Y, Zhang M L . Research advance of quinoa biologically active substance. Farm Prod Proc, 2015, ( 10):58-62 (in Chinese with English abstract)
[5] 任贵兴, 赵钢 . 藜麦研究进展和可持续生产. 北京: 科学出版社, 2018. pp 204-220
Ren G X, Zhao G. Quinoa: Improvement and Sustainable Production. Beijing: Science Press, 2018. pp 204-220(in Chinese)
[6] 苗灵香 . 萌发藜麦成分动态分析及其多酚的研究 . 山西农业大学硕士学位论文, 山西晋中, 2015
Miao L X . Dynamic Analysis of Germinating Quinoa Component and Its Polyphenols’s Research. MS Thesis of Shanxi Agricultural University , Jinzhong, Shanxi, China, 2015 ( in Chinese with English abstract)
[7] 石振兴 . 国内外藜麦品质分析及其减肥活性研究. 中国农业科学院硕士学位论文, 北京, 2016
Shi Z X . Quality Analysis of Domestic and Foreign Quinoa Accessions and the Anti-obesity Activity Research. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 ( in Chinese with English abstract)
[8] Proinpa R W . Quinoa: an ancient crop to contribute to world food security . Santiago: Regional Office for Latin America and the Caribbean. 2011, pp 7-12
[9] Filho A M, Pirozi M R, Borges J T , Pinheiro Sant’Ana H M , Chaves J B, Coimbra J S. Quinoa: nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr, 2017,57:1618-1630
doi: 10.1080/10408398.2014.1001811 pmid: 26114306
[10] Tang Y, Li X, Zhang B, Chen P X, Liu R, Tsao R . Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem, 2015,166:380-388
[11] 申瑞玲, 张文杰, 董吉林, 相启森 . 藜麦的营养成分、健康促进作用及其在食品工业中的应用. 中国粮油学报, 2016,31(9):150-155
doi: 10.3969/j.issn.1003-0174.2016.09.027
Shen R L, Zhang W J, Dong J L, Xiang Q S . Nutritional components, health - promoting effects of quinoa (Chenopodium quinoa) and its application in the food industry. J Chin Cereals Oils Assoc, 2016,31(9):150-155 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0174.2016.09.027
[12] Park J H, Lee Y J, Kim Y H, Yoon K S . Antioxidant and antimicrobial activities of quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Prev Nutr Food Sci, 2017,22:195-202
[13] Miranda M, Delatorre-Herrera J, Vega-Gálvez A, Jorquera E, Quispe-Fuentes I, Martínez E A . Antimicrobial potential and phytochemical content of six diverse sources of quinoa seeds (Chenopodium quinoa Willd.) . Agric Sci, 2014,5:1015-1024
[14] Hirose Y, Fujita T, Ishii T, Ueno N . Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem, 2010,119:1300-1306
[15] Gawlik-Dziki U, Świeca M, Sułkowski M, Dziki D, Baraniak B, Czyż J . Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts—in vitro study. Food Chem Toxicol, 2013,57:154-160
[16] Brittany L G, Patricio R S, Leonel E R, Jose D H, Manuel E B, Ilya R . Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.) . Compr Rev Food Sci Food Saf, 2015,14:431-445
[17] Alvarez-Jubete L, Wijngaard H, Arendt E K, Gallagher E . Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem, 2010,2:770-778
[18] Zhu N Q, Sheng S Q, Li D J, Lavoie E J, Karwe M V, Rosen R T, Ho C T . Antioxidative flavonoid glycosides from quinoa seeds ( Chenopodium quinoa Willd).J Food Lipids, 2001,8:37-44
[19] 陈树俊, 胡洁, 庞震鹏, 刘晓娟, 徐晓霞, 仪鑫 . 藜麦营养成分及多酚抗氧化活性的研究进展. 山西农业科学, 2016,44:110-114
doi: 10.3969/j.issn.1002-2481.2016.01.29
Chen S J, Hu J, Pang Z P, Liu X J, Xu X X, Yi X . Research progress on nutritional components and antioxidant activity of polyphenol of quinoa. J Shanxi Agric Sci, 2016,44:110-114 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2016.01.29
[20] Repo-Carrasco-Valencia R, Hellstrom J K, Pihlava J M, Mattila P H . Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa ( Chenopodium quinoa), kaniwa( Chenopodium pallidicaule) and kiwicha, 2010,120:128-133
[21] 董晶, 张焱, 曹赵茹, 李志英 . 藜麦总黄酮的超声波法提取及抗氧化活性. 江苏农业科学, 2015,43(4):267-269
doi: 10.15889/j.issn.1002-1302.2015.04.097
Dong J, Zhang Y, Cao Z R, Li Z Y . Ultrasonic extraction and antioxidation activity of total flavonoids from quinoa. Jiangsu Agric Sci, 2015,43(4):267-269 (in Chinese)
doi: 10.15889/j.issn.1002-1302.2015.04.097
[22] Świeca M, Sęczyk Ł, Gawlik-Dziki U, Dziki D . Bread enriched with quinoa leaves: the influence of protein-phenolics interactions on the nutritional and antioxidant quality. Food Chem, 2014,162:54-62
doi: 10.1016/j.foodchem.2014.04.044
[23] Yu S H, Yu J M, Yoo H J, Lee S J, Kang D H, Cho Y J, Kim D M . Anti-proliferative effects of rutin on OLETF rat vascular smooth muscle cells stimulated by glucose variability. Yonsei Med J, 2016,57:373-381
doi: 10.3349/ymj.2016.57.2.373
[24] Atkinson F S, Foster-Powell K , Brand-Miller J C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 2008,31:2281-2283
doi: 10.2337/dc08-1239
[25] Tang Y, Zhang B, Li X, Chen P X, Zhang H, Liu R, Tsao R . Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. . Agric Food Chem, 2016,64:1712-1719
doi: 10.1021/acs.jafc.5b05761
[26] Woldemichael G M, Wink M . Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. . Agric Food Chem, 2001,49:2327-2332
doi: 10.1021/jf0013499 pmid: 11368598
[27] Abugoch James L E . Quinoa (Chenopodium quinoa Willd.) . composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 2009,58:1-31
[28] Solíz-Guerrero J B, De Rodriguez D J, Rodríguez-García R, Angulo-sánchez J L, Méndez-padilla G . Quinoa saponins: concentration and composition analysis . In: Janick J, Whipkey A, eds. Trends in New Crops and New Uses. Alexandria, VA: ASHS Press, 2002. pp 110-114
[29] Kuljanabhagavad T, Thongphasuk P, Chamulitrat W, Wink M . Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry, 2008,69:1919-1926
[30] Yao Y, Yang X, Shi Z, Ren G . Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J Food Sci, 2014,79:1018-1023
[31] Letelier M E, Rodríguez-Rojas C, Sánchez-Jofré S, Aracena- Parks P . Surfactant and antioxidant properties of an extract from Chenopodium quinoa Willd. seed coats. J Cereal Sci, 2011,53:239-243
[32] Estrada A, Li B, Laarveld B . Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comp Immunol Microbiol Infect Dis, 1998,21:225-236
[33] Verza S G, Silveira F, Cibulski S, Kaiser S, Ferreira F, Gosmann G, Roehe P M, Ortega G G . Immunoadjuvant activity, toxicity assays, and determination by UPLC/Q-TOF-MS of triterpenicsaponins from Chenopodium quinoa seeds. . Agric Food Chem, 2012,60:3113-3118
doi: 10.1021/jf205010c
[34] Stuardo M, San Martín R . Antifungal properties of quinoa (Chenopodium quinoa Willd.) alkali treated saponins against Botrytis cinerea. Ind Crop Prod, 2008,27:296-302
[35] Meyer B N, Heinstein P F, Burnouf-Radosevich M, Delfel N E, Mclaughlin J L . Bioactivity-directed isolation and characterization of quinoside A: one of the toxic/bitter principles of quinoa seeds (Chenopodium quinoa Willd.) . J Agric Food Chem, 1990,38:205-208
[36] Cordeiro L M C, de Reinhardt V F, Baggio C H, de Werner M F P, Burci L M, Sassaki G L, Iacomini M . Arabinan and arabinan-rich pectic polysaccharides from quinoa ( Chenopodium quinoa) seeds: structure and gastroprotective activity. Food Chem, 2012,130:937-944
[37] Li G, Zhu F . Quinoa starch: structures, properties, and applications. Carbohydrpolym, 2018,181:851-861
doi: 10.1016/j.carbpol.2017.11.067 pmid: 29254045
[38] Lamothe L M, Srichuwong S, Reuhs B L, Hamaker B R . Quinoa (Chenopodium quinoa Willd.) and amaranth( Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem, 2015,167:490-496
[39] USDA ( United States Department of Agriculture). National Nutrient Database for Standard Reference Release, 2015. p 28
[40] Verma S, Srivastava S, Tiwari N . Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products. . Food Sci Technol, 2015,52:5147-5155
[41] 徐澜, 郭晨晨, 赵慧 . 超声波辅助提取藜麦多糖及其抑菌性与抗氧化性. 江苏农业科学, 2017,45(11):143-146
doi: 10.15889/j.issn.1002-1302.2017.11.039
Xu L, Guo C C, Zhao H . Ultrasonic assisted extraction of quinoa polysaccharide and its antibacterial and antioxidant properties. Jiangsu Agric Sci, 2017,45(11):143-146 (in Chinese)
doi: 10.15889/j.issn.1002-1302.2017.11.039
[42] Repo-Carrasco R, Espinoza C, Jacobsen S E . Nutritional value and use of the Andean crops quinoa ( Chenopodium quinoa) and kañiwa( Chenopodium pallidicaule). Food Rev Int, 2003,19:179-189
[43] Navarro-Perez D, Radcliffe J, Tierney A, Jois M . Quinoa seed lowers serum triglycerides in overweight and obese subjects: a dose-response randomized controlled clinical trial. Curr Dev Nutr, 2017,1:e001321
doi: 10.3945/cdn.117.001321
[44] Paśko P, Zagrodzki P, Bartoń H, Chłopicka J, Gorinstein S . Effect of quinoa seeds ( Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Hum Nutr, 2010,65:333-338
[45] 胡一晨, 赵钢, 邹亮, 赵江林, 向达兵, 白雪, 吴琪 . 一种藜麦多糖在制备具有降血脂功效的食品或药品中的应用 . 中国专利, 编号: 201610710973.3. 2016 -08-23
Hu Y C, Zhao G, Zou L, Zhao J L, Xiang D B, Bai X, Wu Q. Application of Quinoa Polysaccharides in the Preparation of Food or Medicine with the Effect of Anti-hyperlipidemia. China, Patent, No. 201610710973.3 . 2016 -08-23 (in Chinese)
[46] Yao Y, Shi Z, Ren G . Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.) . Int J Mol Sci, 2014,15:19307-19318
[47] Hu Y C, Zhang J M, Zou L, Fu C M, Li P, Zhao G . Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int J Biol Macromol, 2017,99:622-629
[48] Pagno C H , Costa T M H, de Menezes E W, Benvenutti E V, Hertz P F, Matte C R, Tosati J V, Monteiro A R, Rios A O, Flôres S H. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem, 2015,173:755-762
[49] Koziol M J . Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.) . J Food Compos Anal, 1992,5:35-68
[50] Brinegar C, Sine B, Nwokocha L . High-cysteine 2S seed storage proteins from quinoa ( Chenopodium quinoa). J Agric Food Chem, 1996,44:1621-1623
[51] Brinegar C, Goundan S . Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). J Agric Food Chem, 1993,41:182-185
[52] 雷洁琼 . 藜麦功能成分研究及利用. 青海畜牧兽医杂志, 2016,46(3):42-47
doi: 10.3969/j.issn.1003-7950.2016.03.020
Lei J Q . Research and utilization of quinoa functional components. Chin Qinghai J Anim Vet Sci, 2016,46(3):42-47 (in Chinese)
doi: 10.3969/j.issn.1003-7950.2016.03.020
[53] Prakash D, Pal M . Chenopodium: seed protein, fractionation and amino acid composition. Int J Food Sci Nutr, 1998,49:271-275
doi: 10.3109/09637489809089398
[54] 邓俊琳, 夏陈, 张盈娇, 陈建, 杰布, 林长彬, 李娟, 朱永清 . 拉萨藜麦营养成分分析与比较. 中国食物与营养, 2017,23(9):55-58
Deng J L, Xia C, Zhang Y J, Chen J, Jie B, Lin C B, Li J, Zhu Y Q . Nutrition composition analysis on quinoa cultivated in Lasa. Food Nutr Chin, 2017,23(9):55-58 (in Chinese with English abstract)
[55] 卢宇, 张美莉, 王欣, 张园园, 阿荣, 张淼 . 内蒙古藜麦的营养成分分析及评价. 中国食物与营养, 2017,23(9):50-54
Lu Y, Zhang M L, Wang X, Zhang Y Y , A R , Zhang M . Nutritional components analysis and quality evaluation on quinoa cultivated in Innermogolia. Food Nutr Chin, 2017,23(9):50-54 (in Chinese with English abstract)
[56] Meneguetti Q A, Brenzan M A, Batista M R, Bazotte R B, Silva D R , Garcia Cortez D A. Biological effects of hydrolyzed quinoa extract from seeds of Chenopodium quinoa Willd. J Med Food, 2011,14:653-657
[57] Zevallos V F, Herencia L I, Chang F, Donnelly S, Ellis H J, Ciclitira P J . Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. Am J Gastroenterol, 2014,109:270-278
[58] Vilcacundo R, Barrio D, Carpio C, García-Ruiz A, Rúales J, Hernández-Ledesma B, Carrillo W . Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the zebrafish larvae model. Plant Foods Hum Nutr, 2017,72:294-300
[59] Liu J, Jia S H, Kirberger M, Chen N . Lunasin as a promising health-beneficial peptide. Eur Rev Med Pharmacol Sci, 2014,18:2070-2075
doi: 10.4314/tjpr.v13i7.24 pmid: 25027349
[60] Ren G X, Zhu Y Y, Shi Z X . Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti-inflammatory activities. J Sci Food Agric, 2017,97:4110-4116
[61] Dinan L, Whiting P, Scott A J . Taxonomic distribution of phytoecdysteroids in seeds of members of the Chenopodiaceae. Biochem Sys Ecol, 1998,26:553-576
doi: 10.1016/S0305-1978(98)00005-2
[62] Dinan L . The association of phytoecdysteroids with flowering in fat hen, Chenpodium album, and other members of the Chenopodiaceae. Experientia, 1992,48:305-308
[63] Kumpun S, Maria A, Crouzet S, Evrard-Todeschi N, Girault J P, Lafont R . Ecdysteroids from Chenopodium quinoa Willd. an ancient Andean crop of high nutritional value. Food Chem, 2011,125:1226-1234
[64] Nsimba R Y, Kikuzaki H, Konishi Y . Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress. . Biochem Mol Toxic, 2008,22:240-250
doi: 10.1002/jbt.20234 pmid: 18752310
[65] Kizelsztein P, Govorko D, Komarnytsky S, Evans A, Wang Z, Cefalu W T, Raskin I . 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am J Physiol Endocrinol Metab, 2009,296:E433-E439
doi: 10.1152/ajpendo.90772.2008
[66] De Carvalho F G, Ovídio P P, Padovan G J, Jordão Junior A A, Marchini J S, Navarro A M . Metabolic parameters of postmenopausal women after quinoa or corn flakes intake: a prospective and double-blind study. Int J Food Sci Nutr, 2014,65:380-385
doi: 10.3109/09637486.2013.866637
[1] DENG Yan, WANG Juan-Ling, WANG Chuang-Yun, ZHAO Li, ZHANG Li-Guang, GUO Hong-Xia, GUO Hong-Xia, QIN Li-Xia, WANG Mei-Xia. Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa [J]. Acta Agronomica Sinica, 2021, 47(7): 1383-1390.
[2] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[3] ZHAO Song-Chao,LI Yi-Fan,LIU Bo-Yuan,ZHAO Ming-Qin. Effects of air drying density on membranous lipid peroxidation and quality of cigar tobacco leaf [J]. Acta Agronomica Sinica, 2019, 45(7): 1090-1098.
[4] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[5] HU Yi-Bo, YANG Xiu-Shi, LU Ping*,REN Gui-Xing*. Diversity and Correlation of Quality Traits in Quinoa Germplasms from North China [J]. Acta Agron Sin, 2017, 43(03): 464-470.
[6] ZHANG Ti-Fu,QI Wi-Cong,GU Min-Feng,ZHANG Xiao-Lin,LI Tan,ZHAO Han. Exploration and Transferability Evaluation of EST-SSRs in Quinoa [J]. Acta Agron Sin, 2016, 42(04): 492-500.
[7] XING Cheng-Hua,ZHANG Shu-Na,WU Kun,WANG Ning,LING Yun. Effects of Root Border Cells on Root Growth and Cell Wall Polysaccharide Contents in Rice Seedlings and Their Relation to Aluminum Tolerance [J]. Acta Agron Sin, 2012, 38(05): 880-886.
[8] WU De-Chuan,ZHOU Ji-Heng,FAN Zai-Dou,LI Wen-Bi,ZHANG Yi-Yang,YANG Cheng. Spatial Variability of Polyphenol Content of Flue-Cured Tobacco in Yunnan Province,China [J]. Acta Agron Sin, 2010, 36(1): 141-146.
[9] ZENG Kui ;LIU Zhong-Song ; ;LONG Sang ;YAN Ming-Li. UV-Vis Spectrum Differences of Polyphenols between Yellow and Black Seed Coats of Brassica juncea [J]. Acta Agron Sin, 2007, 33(03): 476-481.
[10] WANG Qing;HUANG Hui-Ying;CHEN Ya-Lan;WANG Di. Variation of Polyphenol Oxidase Activity and Isozyme in Transgenic Homozygous Tetraploid Potato (Solanum tuberosum L.) [J]. Acta Agron Sin, 2005, 31(09): 1162-1166.
[11] ZHANG Li-Ping;GE Xiu-Xiu;HE Zhong-Hu; WANG De-Sen; YAN Jun; XIA Xian-Chun; Mark W Sutherland. Mapping QTLs for Polyphenol Oxidase Activity in a DH Population from Common Wheat [J]. Acta Agron Sin, 2005, 31(01): 7-10.
[12] QI Shao-Wu;GUAN Chun-Yun;LIU Chun-Lin. Relationship between Some Enzyme Activity and Resistance to Sclerotinia sclerotiorum of Rapeseed Cultivars [J]. Acta Agron Sin, 2004, 30(03): 270-273.
[13] GE Xiu-Xiu; ZHANG Li-Ping; HE Zhong-Hu; ZHANG Yuan-Ming. The Mixed Inheritance Analysis of Polyphenol Oxidase Activities in Winter Wheat [J]. Acta Agron Sin, 2004, 30(01): 18-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!