Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (05): 880-886.doi: 10.3724/SP.J.1006.2012.00880
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
XING Cheng-Hua1,ZHANG Shu-Na2,WU Kun2,WANG Ning2,LING Yun2
[1]Horst W J, Wang Y X, Eticha D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot-London, 2010, 106: 185–197[2]Ma J F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol, 2007, 264: 225–252[3]Yang J L, Li Y Y, Zhang Y J, Zhang S S, Wu Y R, Wu P, Zheng S J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol, 2008, 146: 602–611[4]Hossain A K M Z, Koyama H, Hara T. Sugar compositions and molecular mass distributions of hemicellulosic polysaccharides in wheat plants under aluminum stress at higher level of calcium supply. Asian J Plant Sci, 2005, 4: 11–16[5]Schmohl N, Horst W J. Cell wall pectin content modulates aluminum sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ, 2000, 23: 735–742[6]Van H L, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol, 1994, 106: 971–976[7]Yang J L, Zhu X F, Peng Y X, Zheng C, Liu Y, Shi Y Z, Zheng S J. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol, 2011, 155: 1885–1892[8]Yamaji N, Huang C F, Nagao S, Yano M, Sato Y, Nagamura Y, Ma J F. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell, 2009, 21: 3339–3349[9]Huang C F, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma J F. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell, 2009, 21: 655–667[10]Yu M, Shen R F, Liu J Y, Chen R F, Xu M M, Yang Y, Xiao H D, Wang H Z, Wang H Y, Wang C Q. The role of root border cells in aluminum resistance of pea (Pisum sativum) grown in mist culture. J Plant Nutr Soil Sci, 2009, 172: 528–534[11]Xing C H, Zhu M H, Cai M Z, Liu P, Xu G D, Wu S H. Developmental characteristics and response to iron toxicity of root border cells in rice seedlings. J Zhejiang Univ Sci B, 2008, 9: 261–264[12]Liu J-Y(刘家友),Yu M(喻敏), Liu L-P(刘丽屏), Xiao H-D(萧洪东). Differences of cell wall polysaccharides in border cells and root apices of pea (Pisum sativum) under aluminium stress. Sci Agric Sin (中国农业科学), 2009, 42(6): 1963–1971 (in Chinese with English abstract)[13]Miyasaka S C, Hawes M C. Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol, 2001, 125: 1978–1987[14]Cai M Z, Wang F M, Li R F,Zhang S N, Wang N, Xu G D. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings. J Inorg Biochem, 2011, 105: 966–971[15]Zhu M Y, Ahn S J, Matsumoto H. Inhibition of growth and development of root border cells in wheat by Al. Physiol Plant, 2003, 117: 359–367[16]Cai M Z, Zhang S N, Xing C H, Wang F M, Wang N, Zhu L. Developmental characteristics and aluminum resistance of root border cells in rice seedlings. Plant Sci, 2011, 180: 702–708[17]Tamás L, Budíková S, Huttová J. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep, 2005, 24: 189–194[18]Ma J F, Shen R F, Zhao Z Q, Wissuwa M, Takeuchi Y, Takeshi Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol, 2002, 43: 652–659[19]Chen R F, Shen R F, Gu P, Dong X Y, Du C W, Ma J F. Response of rice (Oryza sativa L.) with root surface iron plaque under aluminium stress. Ann Bot-London, 2006, 98: 389–395[20]Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol, 1985, 77: 544–551[21]Zhong H, Lauchli A. Changes of cell wall composition and polymesize in primary roots of cotton seedlings under high salinity. J Exp Bot, 1993, 44: 773–778[22]Chen R-F(陈荣府), Yang X-D(杨小弟), Shen R-F(沈仁芳). Methods for determining inorganic monomeric aluminum in acid soil solution by morin. Acta Pedol Sin (土壤学报), 2007, 44(4): 663–668 (in Chinese with English abstract) [23]Taylor K A, Buchanan-Smith J G. A colorimetric for the quantitation of uronic acids and a specific assay for galacturonic acid. Anal Biochem, 1992, 201: 190–196[24]Li R-F (李荣峰), Cai M-Z (蔡妙珍), Liu P (刘鹏), Xu G-D (徐根娣), Liang H (梁和), Zhou Z-G (周主贵). Border cells alleviating aluminum toxicity in soybean root tips. Acta Agron Sin (作物学报), 2008, 34(1): 318–325 (in Chinese with English abstract)[25]Horst W J, Schmohl N, Kollmeier M, Baluska F, Sivaguruet al M. Does aluminium affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil, 1999, 215: 163–174[26]Watanabe T, Misawa S, Hiradate S, Osaki M. Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation. New Phytol, 2008, 178: 581–589[27]Kinraide T B, Ryan P R, Kochian L V. Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol, 1992, 99: 1461–1468.[28]Cai M-Z(蔡妙珍), Xing C-H(邢承华), Liu P(刘鹏), Xu G-D(徐根娣),Wu S-H(吴韶辉), He F(何璠). Dynamic response of root border cells and their associated mucilage exudation in soybean to Al stress and recovery. Acta Phytoecol Sin (植物生态学报), 2008, 32(5): 1007–1014 (in Chinese with English abstract)[29]Yu M, Feng Y M, Goldbach H E. Mist culture for mass harvesting of root border cells: aluminum effects. J Plant Nutr Soil Sci, 2006, 169: 670–674[30]Knee E M, Gong F C, Gao M S, Teplitski M, Jones A R, Foxworthy A, Mort A J, Bauer W D. Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant-Microbe Interact, 2001, 14: 775–784[31]Guinel F C, Mrcully M E. The cells shed by the root cap of Zea: their origin and some structural and physiological properties. Plant Cell Environ, 1987, 10: 565–578[32]Li Y Y, Zhang Y J, Zhou Y, Yang J L, Zheng S J. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance. J Integr Plant Biol, 2009, 51: 574–580[33]Lin X-Y(林咸永), Tang J-F(唐剑锋), Li G(李刚), Zhang Y-S(章永松). Aluminum-induced change in cell-wall polysaccharide content of wheat roots in relation to aluminum tolerance of wheat. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报•农业与生命科学版), 2005, 31(6): 724–730 (in Chinese with English abstract)[34]Zakir Hossain A K M, Koyama H, Hara T. Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol, 2006, 163: 39–47[35]Wehr J B, Menzies N W, Blamey F P C. Inhibition of cell-wall autolysis and pectin degradation by cations. Plant Physiol Biochem, 2004, 42: 485–492 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|