Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1810-1816.doi: 10.3724/SP.J.1006.2020.04080

• RESEARCH NOTES • Previous Articles    

Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages

LI Run-Zhi1(), JIN Qing2, LI Zhao-Hu2, WANG Ye1, PENG Zhen1, DUAN Liu-Sheng1,2,*()   

  1. 1 Beijing University of Agriculture / Beijing Key Laboratory of New Technology in Agricultural Application / National Demonstration Center for Experimental Plant Production Education, Beijing 102206, China
    2 College of Agronomy, China Agricultural University / Engineering Research Center of Plant Growth Regulator, Beijing 100193, China
  • Received:2020-03-29 Accepted:2020-07-02 Online:2020-11-12 Published:2020-07-13
  • Contact: Liu-Sheng DUAN E-mail:lirunzhi7639@163.com;dls@bua.edu.cn

Abstract:

The present study investigated the effects of salicylic acid treatments on morphology, physiological and biochemical parameters and their relationship to salt stress of G. uralensis Fisch seeds and seedlings. Under the salt stress of 200 mmol L-1 NaCl, the application of 0.5 mmol L-1 salicylic acid on G. uralensis Fisch seeds could significantly promote the elongation of radicle, increase fresh weight of seedlings, reduce the content of malondialdehyde (MDA) and proline in the radicle, and improve the activity of peroxidase (POD). Under the salt stress (i.e. 100 mmol L -1 and 200 mmol L-1 NaCl), the application of 0.5 mmol L-1 salicylic acid on G. uralensis Fisch seedling could reduce MDA and proline content, and increase the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in different degrees. Under salt stress condition, the application of salicylic acid could increase the root glycyrrhizinic acid content. In summary, the application of salicylic acid could improve the tolerance to salt stress by alleviating the inhibition of salt stress on the germination of seeds, increasing the activity of antioxidant enzymes, and reducing the degree of membrane lipid peroxidation.

Key words: salicylic acid, Glycyrrhiza uralensis, salt stress, stress resistance

Table 1

Effect of salicylic acid on the fresh weight of G. uralensis seeds under salt stress (mg)"

处理
Treatment
处理时间 Treatment time
1 h 6 h 12 h 24 h 72 h
CK0 35.3±1.0 ab 43.6±2.3 a 44.5±2.4 a 48.5±2.6 a 62.4±3.6 a
SA0 36.4±1.5 a 44.7±1.7 a 45.2±2.5 a 49.1±1.9 a 64.1±2.1 a
CK200 32.3±1.6 c 33.2±0.9 c 34.8±2.1 c 37.4±1.0 c 46.8±2.0 c
SA200 34.0±1.4 bc 35.3±1.0 b 38.6±0.5 b 40.3±1.6 b 52.9±1.9 b

Fig. 1

Effect of salicylic acid on the radicle length of G. uralensis seeds under salt stress Treatments are the same as those given in Table 1. Different lowercase letters above the bar mean significant difference at the 0.05 probability level."

Fig. 2

Effects of salicylic acid on the MDA content (A) and proline content (B) in G. uralensis seeds under salt stress Treatments are the same as those given in Table 1. Different lowercase letters above the bar mean significant difference at the 0.05 probability level. MDA: malondialdehyde."

Fig. 3

Effect of salicylic acid on the MDA contents in G. uralensis seedling leaves under salt stress CK0: no SA treatment + no salt stress; SA0: SA treatment + no salt stress; CK100: no SA treatment +100 mmol L-1 NaCl stress; SA100: SA treatment +100 mmol L-1 NaCl stress; CK200: no SA treatment +200 mmol L-1 NaCl stress; SA200: SA treatment +200 mmol L-1 NaCl stress. MDA: malondialdehyde. Different letters above the bar mean significant difference at the 0.05 probability level."

Fig. 4

Effect of salicylic acid on the proline in G. uralensis seedling leaves under salt stress Treatments are the same as those given in Fig. 3. Different lowercase letters above the bar mean significant difference at the 0.05 probability level."

Table 2

Effect of salicylic acid on the antioxidant enzyme activities in G. uralensis seeds under salt stress"

处理
Treatment
SOD活性
SOD activity (U g-1 FW)
POD活性
POD activity (OD470 g-1 FW min-1)
CAT活性
CAT activity (U g-1 FW min-1)
CK0 14±1.3 c 33±1.8 c 2.3±0.2 c
SA0 16±1.2 c 25±1.7 d 2.5±0.2 c
CK200 58±3.6 a 56±2.7 b 4.1±0.3 a
SA200 35±2.0 b 67±3.7 a 3.2±0.2 b

Table 3

Effect of salicylic acid on the antioxidant enzyme activities in G. uralensis seedling leaves under salt stress"

处理
Treatment
SOD活性
SOD activity (U g-1 FW)
POD活性
POD activity (OD470 g-1 FW min-1)
CAT活性
CAT activity (U g-1 FW min-1)
CK0 64.4±4.3 a 9.0±1.1 a 27.3±1.6 b
SA0 64.4±3.6 a 10.6±0.7 a 39.5±1.2 a
CK100 108.2±8.1 a 13.3±0.8 a 27.6±1.2 b
SA100 80.5±5.6 b 11.1±1.3 a 39.9±0.9 a
CK200 130.9±7.6 a 12.3±1.0 b 27.2±2.0 a
SA200 144.3±9.2 a 16.8±0.9 a 32.6±1.5 b

Table 4

Effect of salicylic acid on the glycyrrhizinic acid content in G. uralensis seeds under salt stress (μg g-1 FW)"

处理
Treatment
1 h 6 h 12 h 24 h 72 h
CK0 0.35±0.02 b 0.45±0.12 ab 0.73±0.09 ab 1.69±0.29 ab 4.62±0.52 b
SA0 0.45±0.03 a 0.65±0.12 a 0.95±0.10 a 1.89±0.36 a 5.81±0.32 a
CK200 0.19±0.01 c 0.25±0.07 b 0.38±0.15 b 0.79±0.04 c 2.64±0.21 c
SA200 0.33±0.03 b 0.43±0.11 ab 0.71±0.19 ab 1.18±0.09 b 3.86±0.45 b

Fig. 5

Effect of salicylic acid on the glycyrrhizinic acid content in G. uralensis seedling roots under salt stress Treatments are the same as those given in Fig. 3. Different lowercase letters above the bar mean significant difference at the 0.05 probability level."

[1] 马毓泉. 内蒙古植物志(第三卷). 呼和浩特: 内蒙古人民出版社, 1989. pp 245-247.
Ma Y Q. Flora of Inner Mongolia (Volume 3). Huhhot: Inner Mongolia People’s Publishing House, 1989. pp 245-247(in Chinese).
[2] 张继, 姚健, 丁兰, 郭守军, 杨永利. 甘草的利用研究进展. 草原与草坪, 2000,89(2):12-16.
Zhang J, Yao J, Ding L, Guo S J, Yang Y L. Advancement of research on the utilization of Glycyrrhiza. Grass Turf, 2000,89(2):12-16 (in Chinese with English abstract).
[3] 储纪芳. 上海市城市绿地土壤特点与改良对策. 中国城市林业, 2010,8(1):47-49.
Chu J F. Soil properties and an improvement strategy for urban landscape greening in Shanghai. J Chin Urban For, 2010,8(1):47-49 (in Chinese with English abstract).
[4] Tasgin E, Atici O, Nalbantoglu B, Popova L P. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 2006,67:710-715.
pmid: 16519911
[5] Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul, 2000,30:157-161.
[6] Farahbakhsh H, Saiid M S. Effects of foliar application of salicylic acid on vegetative growth of maize under saline conditions. Afr J Plant Sci, 2011,5:575-578.
[7] 徐芬芬, 叶利民, 孙海玲, 吴丹. 水杨酸对水稻种子活力及抗盐性的影响. 广东农业科学, 2009, (8):38-39.
Xu F F, Ye L M, Sun H L, Wu D. Effects of salicylic acid on seed vigor and salt resistance of rice. Guangdong Agric Sci, 2009, (8):38-39 (in Chinese).
[8] Farhangi-Abriz S, Ghassemi-Golezani K. Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J Appl Bot Food Qual, 2016,89:243-248.
[9] Faried H N, Ayyub C M, Amjad M, Ahmed R, Wattoo F M, Butt M. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidants activities and osmoregulation. J Sci Food Agric, 2016,97:1868-1875.
doi: 10.1002/jsfa.7989 pmid: 27507604
[10] 冯峰, 王育鹏, 张震, 周守标. 水杨酸通过一氧化氮信号诱导抗氧化防护来提高小麦幼苗根部耐盐性. 中国农学通报, 2008,24(9):248-252.
Feng F, Wang Y P, Zhang Z, Zhou S B. Nitric oxide is involved in salicylic acid induced-antioxidant defense under salt stress in wheat seedling roots. Chin Agric Sci Bull, 2008,24(9):248-252 (in Chinese with English abstract).
[11] 沙汉景, 刘化龙, 王敬国, 贾琰, 王新鹏, 邹德堂, 赵宏伟. 水杨酸调控作物耐盐性生理机制. 东北农业大学学报, 2017,48(3):80-88.
Sha H J, Liu H L, Wang J G, Jia Y, Wang X P, Zou D T, Zhao H W. Physiological mechanism of salicylic acid regulating salt tolerance of crops. J Northeast Agric Univ, 2017,48(3):80-88 (in Chinese with English abstract).
[12] 杨秀红, 李建民, 董学会, 段留生, 李召虎. 盐胁迫对甘草种子发芽与子叶抗氧化指标的影响. 种子, 2005,24(9):30-32.
Yang X H, Li J M, Dong X H, Duan L S, Li Z H. Effects of salt stress on germination and antioxidant characters of cotyledons in Glycyrrhiza uralensis Fisch seeds. Seed, 2005,24(9):30-32 (in Chinese with English abstract).
[13] 杨秀红, 李建民, 董学会, 段留生, 李召虎. 盐胁迫对甘草幼苗生长及其生理指标的影响. 华北农学报, 2006,21(4):39-42.
Yang X H, Li J M, Dong X H, Duan L S, Li Z H. Effects of salt stress on growth and some physiological indexes in Glycyrrhiza uralensis Fisch seedlings. Acta Agric Boreali-Sin, 2006,21(4):39-42 (in Chinese with English abstract).
[14] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot, 1981,32:93-101.
[15] Kar P K, Choudhuri M A. Possible mechanisms of light-induced chlorophyll eradication in senescing leaves of Hydrila veticillata. Physiol Plant, 1987,70:729-734.
[16] Aebi H. Catalase in vitro. Methods Enzymol, 1984,105:121-126.
doi: 10.1016/s0076-6879(84)05016-3 pmid: 6727660
[17] Li B L, Mei H S. Relationship between oat leaf senescence and activated oxygen metabolism. Acta Phytophysiol Sin, 1989,15:6-12.
[18] Zhu G L, Deng X W, Zuo W N. Determination of free proline in plants. Plant Physiol Commun, 1983,1:35-37.
[19] Zhao J, Li G, Wang B M, Liu W, Nan T G, Zhai Z X, Li Z H, Li Q X. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of glycyrrhizic acid. Anal Bioanal Chem, 2006,386:1735-1740.
pmid: 17006677
[20] Uniyal R C, Nautiyal A R. Seed germination and seedling extension growth in Qugeinia dalbergioides Benth. under water salinity stress. New Forests, 1998,16:265-272.
[21] 张士功, 高吉寅, 宋景芝. 水杨酸对提高小麦抗盐效应的研究. 中国农业科技导报, 1999, (1):32-35.
Zhang S G, Gao J Y, Song J Z. New discovery of crop salt-resistance: effect of salicylic acid on salt-resistance in wheat (Triticum aestivum L.). J Agric Sci Technol China, 1999, (1):32-35 (in Chinese with English abstract).
[22] 杨秀红, 李建民, 董学会, 段留生, 李召虎. 外源甘草酸对NaCl胁迫条件下甘草幼苗生长、根部甘草酸含量以及几种与盐胁迫相关生理指标的影响. 植物生理学通讯, 2006,42:441-444.
Yang X H, Li J M, Dong X H, Duan L S, Li Z H. Effects of exogenous glycyrrhizinic acid on the seedling growth, glycyrrhizinic acid content of roots and some physiological indexes of Glycyrrhiza uralensis Fisch. seedling under NaCl stress. Plant Physiol Commun, 2006,42:441-444 (in Chinese with English abstract).
[23] Flores A, Grau A, Laurich F, Doerfeling K. Effects of new terpenoid anologues of abscisci acid on chilling and freezing resistances. J Plant Physiol, 1988,132:362-363.
[24] Upadhyaya A, Davis T D, Walser R H. Uniconazole-induced alleviation of low-temperature damage in relation to antioxidant activity. Hortscience, 1989,24:955-957.
[25] Feng Z Z, Guo A H, Feng Z W. Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul, 2003,39:277-283.
[26] Pell E J, Dann M S. Multiple stress and plant senescence. In: Mooney H A, Winner W E, Pell E J, eds. Integrated Response of Plant to Stress. San Diego: Academic Press, 1991. pp 189-284.
[27] Chen Z, Ricigliano J W, Klessig D F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA, 1993,90:9533-9537.
pmid: 8415736
[28] Tasgin E, Atici O, Nalbantoglu B, Popova L P. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 2006,67:710-715.
pmid: 16519911
[29] 刘爱荣, 张远兵, 叶梅荣, 陈登科. 外源水杨酸对盐胁迫下大豆抗氧化能力的影响. 安徽科技学院学报, 2006,20(4):8-11.
Liu A R, Zhang Z Y, Ye M R, Chen D K. Effect of exogenous salicylic acid on the antioxidant ability of soybean under salt stress. J Anhui Sci Technol Univ, 2006,20(4):8-11 (in Chinese with English abstract).
[30] 佘小平, 贺军民, 张键, 邹庆春. 水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应. 西北植物学报, 2002,22:197-202.
She X P, He J M, Zhang J, Zou Q C. Mitigative effect of salicylic acid on salt stress-induced growth inhibition in cucumber seedling. Acta Bot Boreali-Occident Sin, 2002,22:197-202 (in Chinese with English abstract).
[31] 廖建雄, 王根轩. 甘草酸在甘草适应荒漠生境中的可能作用. 植物生理学通讯, 2003,9:367-370.
Liao J X, Wang G X. The possible role of glycyrrhizic acid in the adaptation of Glycyrrhiza uralensis Fisch to desert environment. Plant Physiol Commun, 2003,9:367-370 (in Chinese with English abstract).
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[3] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[4] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[5] Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922.
[6] CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439.
[7] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[8] TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028.
[9] Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187.
[10] Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE. A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses [J]. Acta Agronomica Sinica, 2018, 44(6): 824-835.
[11] Guang-Long ZHU,Cheng-Yu SONG,Lin-Lin YU,Xu-Bing CHEN,Wen-Fang ZHI,Jia-Wei LIU,Xiu-Rong JIAO,Gui-Sheng ZHOU. Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis [J]. Acta Agronomica Sinica, 2018, 44(11): 1713-1724.
[12] Ren-Feng XUE, Li WANG, Ming FENG, Wei-De GE. Identification and Expression Analysis of Likely Orthologs of Tobacco Salicylic Acid Binding Protein 2 in Common Beans [J]. Acta Agronomica Sinica, 2018, 44(05): 642-649.
[13] SHA Han-Jing, HU Wen-Cheng, JIA Yan, WANG Xin-Peng, TIAN Xue-Fei, YU Mei-Fang, and ZHAO Hong-Wei*. Effect of Exogenous Salicylic Acid, Proline and γ-Aminobutyric Acid on Yield of Rice under Salt Stress [J]. Acta Agron Sin, 2017, 43(11): 1677-1688.
[14] WANG Cui-Ping,HUA Xue-Jun,LIN Bin,LIU Ai-Hua. Evolutionary Fate and Expression Pattern of Genes Related to Proline Biosynthesis in Brassica napus [J]. Acta Agron Sin, 2017, 43(10): 1480-1488.
[15] HOU Lin-Tao,WANG Teng-Yue,JIAN Hong-Ju,WANG Jia,LI Jia-Na,LIU Lie-Zhao. QTL Mapping for Seedling Dry Weight and Fresh Weight under Salt Stress and Candidate Genes Analysis in Brassica napus L. [J]. Acta Agron Sin, 2017, 43(02): 179-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!